Tuorui "v1ncent19" Peng
En voyage dans l'espace de Hilbert.

Convergence Order 1.618 of Secant Interpolation Rooting

Recap

Convergence Order

For some iteration algorithm \(x^{(t+1)}=g\left( x^{(t)} \right)\) with final solution denoted \(x^*\), error \(\varepsilon ^{(t)}:=x^{(t)}-x^*\), its convergence order \(\alpha\) and converngence rate \(c\): \(\begin{align} \lim_{t\to\infty}\dfrac{|\varepsilon ^{(t+1)}|}{|\varepsilon ^{(t)}|^\alpha }=c \end{align}\)

Secant Interpolation for Rooting:

In rooting \(f(x)\), with initial points \(x^{(-1)}\), \(x^{(0)}\) set, root of secant interpolation in each step \((t)\) is: \(\begin{align} x^{(t+1)}=\dfrac{x^{(t-1)}f\left( x^{(t)} \right)-x^{(t)}f\left( x^{(t-1)} \right)}{f\left( x^{(t)} \right)-f\left( x^{(t-1)} \right)} \end{align}\)

Deduction:

Taylor series of \(f(x)\) at \(x^*\) to the second order is: \(\begin{align} f(x)=f'(x^{*})(x-x^{*})+\dfrac{1}{2}f''(x^{*})\left(x-x^{*}\right)^2 \end{align}\)

substitute in secant rooting \(\begin{align} x^{(t+1)}=\dfrac{x^{(t-1)}f(x^{(t)})-x^{(t)}f(x^{(t-1)})}{f(x^{(t)})-f(x^{(t-1)})} \end{align}\)

to obtain \(\begin{align} x^{(t+1)}-x^*=&\dfrac{x^{(t-1)}f(x^{(t)})-x^{(t)}f(x^{(t-1)})}{f(x^{(t)})-f(x^{(t-1)})} -x^*\\ =&\dfrac{\left( f'x^*(x^{(t)}-x^*)+\frac{1}{2}f''(x^*)(x^{(t)}-x^*)^2 \right)(x^{(t-1)}-x^*)}{f'(x^*)(x^{(t)}-x^{(t-1)})-\frac{1}{2}f''(x^*)(x^{(t)}-x^{(t-1)})(x^{(t)}+x^{(t-1)}-2x^*)}\\ &- \dfrac{\left( f'x^*(x^{(t-1)}-x^*)+\frac{1}{2}f''(x^*)(x^{(t-1)}-x^*)^2 \right)(x^{(t)}-x^*)}{f'(x^*)(x^{(t)}-x^{(t-1)})-\frac{1}{2}f''(x^*)(x^{(t)}-x^{(t-1)})(x^{(t)}+x^{(t-1)}-2x^*)} \\ =&\dfrac{\frac{1}{2}f''(x^*)(x^{(t)}-x^*)(x^{(t-1)}-x^*)}{f'(x^*)-\frac{1}{2}f''(x^*)(x^{(t)}+x^{(t-1)}-2x^*)}\\ \end{align}\)

Denote \(e^{(t)}\equiv x^{(t)}-x^*\), take \(t\to\infty\) to obtain \(\begin{align} \dfrac{e^{(t+1)}}{e^{(t)}e^{(t-1)}}=\dfrac{f''(x^*)}{2f'(x^*)-f''(x^*)(e^{(t)}+e^{(t-1)})}\to \dfrac{f''(x^*)}{2f'(x^*)} \end{align}\)

Denote \(e^{(t-1)}\equiv a\). We could first assume convergence order \(\alpha\) and convergence rate \(c\), then \(\begin{align} \lim_{t\to\infty}\dfrac{e^{(t+1)}}{[e^{(t)}]^\alpha }= \lim_{t\to\infty}\dfrac{e^{(t)}}{[e^{(t-1)}]^\alpha }=c\Rightarrow e^{(t+1)}=c^\alpha a^{\alpha^2},\quad e^{(t)}=ca^\alpha \end{align}\)

substitute into the iteration of error \(\begin{align} \dfrac{e^{(t+1)}}{e^{(t)}e^{(t-1)}}=\lambda ^{\alpha -1}a^{\alpha ^2-\alpha -1} =\dfrac{f''(x^*)}{2f'(x^*)}=\mathrm{const} \end{align}\)

Considering that \(\lim_{t\to\infty}e^{(t-1)}=0\), there must be \({\alpha ^2-\alpha -1} =0\), thus \(\begin{align} \alpha=\frac{\sqrt{5}+1}{2}\approx 1.618 \end{align}\)


Author: Vincent Peng

First Created: November 15, 2021

Category: Knowledge