Tuorui "v1ncent19" Peng
En voyage dans l'espace de Hilbert.

Best Linear Estimator

Theoretically best linear estimator is crucial in definition of Partial Autocorrelation in time series. It provides an estimation with correlated variable considered. \(\begin{align} L({X}_\tau|X_1,X_2,\ldots,X_n)=&\beta _0+X_{1}\beta _1+X_2\beta _2+\ldots+X_n\beta _n=\beta _0+X'\beta \\ \{\beta _0,\beta \}=&\mathop{\arg\min}\limits_{\beta _0,\beta } \mathbb{E}_{X_\tau,X}\left[ \left( X_\tau-L({X}_\tau|X_1,X_2,\ldots,X_n) \right)^2\right] \\ \end{align}\)

Express equation $(2)$ in terms of $\mathbb{E}$ and $\Sigma _{\cdot ,\cdot }$: \(\begin{align} \mathbb{E}_{X_\tau,X}\left[ \left( X_\tau- L(X_\tau|X) \right)^2 \right]=&\mathbb{E}\left( X_\tau^2 \right) -2\mathbb{E}\left( X_\tau(\beta _0+ X'\beta ) \right) +\mathbb{E}\left( (\beta _0+X'\beta )^2 \right) \\ =&\Sigma _{X_\tau}+\mathbb{E}\left( X_\tau \right)^2\\ &-2\beta _0\mathbb{E}\left( X_\tau \right) -2\left( \Sigma_{X,X_\tau}+\mathbb{E}\left( X_\tau \right) \mathbb{E}\left( X \right) \right)'\beta \\ &+\beta _0^2+2\beta _0\mathbb{E}\left( X \right)'\beta +\beta '\left( \Sigma _X+\mathbb{E}\left( X \right) \mathbb{E}\left( X \right) ' \right)\\ \end{align}\)

where \(\Sigma _{X,X_\tau}=cov(X,X_\tau)\)

Its minimun w.r.t. ${\beta _0,\beta }$ obtained by zero-gradient: \(\begin{align} 0=&\begin{cases} \dfrac{\partial^{} }{\partial \beta _0^{}}=-2\mathbb{E}\left( X_\tau \right) +2\beta _0+2\mathbb{E}\left( X \right) '\beta \\ \dfrac{\partial^{} }{\partial \beta ^{}}=-2(\Sigma _{X,X_\tau}+\mathbb{E}\left( X_\tau \right) \mathbb{E}\left( X \right) )+2\beta _0\mathbb{E}\left( X \right) +2(\Sigma _{X}+\mathbb{E}\left( X \right) \mathbb{E}\left( X \right) ') \end{cases}\\ \Rightarrow &\begin{cases} \beta _0=\mathbb{E}\left( X_\tau \right) -\mathbb{E}\left( X \right) '\beta \\ \beta =\Sigma _{X}^{-1}\Sigma _{X,X_\tau} \end{cases} \end{align}\)

i.e. Best linear estimator \(\begin{align} \hat{X}_\tau=L(X_\tau|X_1,X_2,\ldots,X_n)=\mathbb{E}\left( X_\tau \right) +(X-\mathbb{E}\left( X \right) )'\Sigma _X\Sigma _{X,X\tau} \end{align}\)

in weak stationary time series with $\mathbb{E}\left[ X_t \right]=0,\,\gamma _k,\Gamma _k$: \(\begin{align} L(X_{t+k}|X_{t},X_{t+1},\ldots,X_{t+k-1})=X_{t+k-1:t}'\Gamma _{k-1}^{-1}\gamma _{k-1} \end{align}\)


Author: Vincent Peng

First Created: April 10, 2022

Category: Knowledge