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The statistics course summary actually started from the exam cheatsheets during my first year in minor (2020
fall). At first it only contained some notion explanation / important results. Later I began to add mathematical
deductions, intuition of methods, useful external links, etc. IXIEX is used to compile so that I could include cross
reference, citation, index in the note so that I could look something up in case of forgetting. Also I treat it as an
opportunity to practice TgXlanguage. I made it publicly available in 2022 fall and from then on I’ve been trying
to enrich early chapters, and correct / improve contents. I hope that this summary note could benefit students like
me (e.g. statistics minor students in Tsinghua Univ.). Also I am considering to produce a ZH translation, which
might be more convenient for beginners / people not used to English. Also it could act as a ZH-EN contrast. Now
the translation of some chapters are already in progress (but slow lol). Please contact me if you are also interested.

Since it’s first written as a reminder for statistics, I may not contain some basic knowledge like calculus, linear
algebra, etc in this note. And usually I just write it in a physics student perspective. Besides, for consistency within
file and familiarity for myself, I might not use some commonly used notations, so please be careful if you decide
to use some of my notes for reference. You can look up the denotation table in the case of confusion. Also I am
not a native English speaker, so please forgive me for any grammatical errors. I will try to correct them as soon

as possible.
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Tianying Wang, Sheng Yu, Pengkun Yang.

In particular, I would like to express my appreciation to professor Zaiying Zhou for her guidance, encour-
agement and inspiration, which are largely the driving force for my further study into the field of statistics. And
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Here is a list of frequently used symbols and their meanings in this summary note. I sometimes use different

notation from people used to in the literature, or from the notation in lecture notes of Tsinghua University Statistics

minor courses, or simply follow convention in my Physics major.

Symbol listed here are notations ‘by default’ in this summary note. Specially defined symbols, especially

those different from convention, would be explained in the text.

General Convention

Greek / Latin

Used in Most Cases

()

E, var, corr

Re(-), Im(-)

Greek alphabet is used to describe the intrinsic property while Latin alphabet is used for
estimator. e.g. 0% = var(X), 6% = var(X) = S2. e.g. 0 is used to denote the parameter

of distribution (family).

Used in a sequence, means that we dropout the ™ item in the sequence indexed 1,2, . . .
number of, or number of elements in, - - -

Sample mean, sample variance, sample standard deviation. e.g. X, S%, Sx. But in multi-

variate case I directly use Sx for sample covariance matrix.
Kronecker delta, Dirac delta.

is defined as

independent of

r.v. Expectation, variance (in multivariate case, covariance matrix ), and correlation coefti-
cient. e.g. say E [X], var(X). Sometimes subscript is used to clarify to which r.v. we are
considering expectation. e.g. Ex s (x) [log X]. Sometimes I simply use p1x for expectation

and ag( or X x for variance, px for correlation coefficient.
Indicator Function, in which subscript is the set that the indicator function takes value 1.
Probability measure

real part of, imaginary part of.
15
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SSE, SSR, SST

A = argmax f(«)

[0}

HO; H17 Ha

No, Fin.a, etc.

xXO o x®
X(l), . ,X(n)
iid. or ~
i.i.d.

Used Frequently
D
L

g
(p+1)x1

X
nx(p+1)
L, 1, ¢
M.(s)

For SSError, SSRegression, SSTotal.
Backshift operator.

Fourier transform; Inversed fourier transform.
is used to stress that - is a multi-dim vector.
A is the value of « that maximizes f(«).
Null hypothesis and alternative hypothesis.

(Upper «) Quantile of distributions. I use N, for quantiles of normal distribution instead of

Zo-
Remainder in function series. Or used for complexity of algorithm

Superscript with bracket is used in iteration algorithms to denote the value of this X in the

t jteration.

Order statistics.

independent identically distributed.

Dataset.
Loss function.

Regression coefficient vector, with 5y as the first element.

Design matrix in regression, with a default intercept column.

Likelihood, log-likelihood.

Moment generating function. Usually functions with s as argument are all generating func-

tions, say g(s) for probability generating function; ¢(s) for characteristic function.
Score Function, Fisher Information, Observed Information.

(Usually) T for test statistic; occasionally y? for when testing is x? test, ' for when testing

is F'-test.

If not used as r.v. In most cases used as the normalize constant in unnormalized distribution,

1 - 1 <
Sa}’fzgf:mf




Chapter. I #IZiLE9

Instructor: Wanlu Deng

This part introduces some probabilitics tools used in statistics. Theory in this part is not based on measure

theory, but is quite enough of (applied) statistics lectures.

Section 1.1 Some Important Distributions

X px(k)/ fx(z) E var MGF
Bern(p) p pq q+ pe’
B(n,p) Chpt (1 —p)n* np npq (q+pes)"

1 e’
Geo(p) (1—p)'p = g e
p p L —qe
ck.onk, M nM(N —n)(N — M)
H(n,M,N) - n—
cr N N2(n—1)
AF s
P()\) ge*A A A eAes=1)
1 a+b (b—a)? et — e3¢
U(a,b
(a,5) b—a 2 12 (b—a)s
]. (z—p) os
N (s, 0'2) 5 e 207 1 o2 e ths
oV2m
1 1
Az A
6()‘) \o Ae X F A—s
a—1lg=Az @ @ 2
Ple A) (@) X\ N2 (A—s>
1 Q@ af
B , a—1 1— A—1
(@8) B(a,/ﬁﬁ =2 338 @it
X2 o zzle™3 n 2n (1 —2s)~"/2
T
‘. ) g ety v
Ze e A -
- D(Z) map2es ! n 2n%(m +n — 2)
" | T (gt ) =2 m(n— 2% —4)

Definition of PGF, MGF, CF see section 1.5 ~page 27.
More Properties of x2, ¢, F' see section 1.8.2 ~page 34.

Relation between distributions and more properties see http://www.math.wm.edu/~leemis/chart/UDR/
UDR.html. Distribution support in R. see https://CRAN.R-project.org/view=Distributions
17
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Use the following command for all distributions supported in R. stats::.

1 |?Distributions

Section 1.2 Probability and Probability Model

What is Probability? A ‘belief’ in ‘what would happen. Different people may have different answers.

1.2.1 Sample Space and o-Field

[l Experiment and Sample Space

Def. sample space €2: The set of all possible outcomes of one particular experiment . Conducting the
experiment would result in a result/sample point w in sample space 2. These results should be mutually exclusive,

e.g. Tossing two coins simultaneously, the sample space is the set of all possible results
Q= {(0,0),(0,1),(1,0),(1,1)}, we (1.1)

On the sample space, the ‘belief” in results happening is measured by probability P (w) , w € Q
Note: Randomness comes from the random result w that an experiment generates.
[J Event

We may care about a conbination of some results, say ‘at least one of the coin lands tails-up’. It’s like a
kind of ‘structure’ on sample space describing how we put results together to form Events. The definition is a

o-field(or a o-algebra) .% as a collection of some subsets of €2, with properties:
e Qe F
cifAe Fthen Al € 7

o0
. if A, € .Z, then UAn cF
n=1

And (9, .%) is a measurable space, on which we can select the events that we care about.

Events (and their properties) can be described in the language of set, e.g. for events A, B € .%
* A = B means they are the same event
* AU B means one of them happens
* AN B or AB means both happen

And some more complex ones

AUB=BUA,ANB=BNA

« AU(BUC)=AUBUC,ANn(BNC)=ANBNC

AN(BUC)=(ANB)U(BNC),AU(BNC)=(AUB)N(AUCQ)

AUB=A+A'NB,A=ANnB+AnB"
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A (AUBP=AnBL (AnB)t=Abu B
¢ (Ujoil Aj)c = ﬂjoil AE

s (N2 4t =Uz, AL

1.2.2 Axioms of Probability

P(-) : F +— [0,1] is the probability measure (or probability function) defined on (£2,.%) describing the
possibility that some event A € .% happens. Definition of probability P(A) in useful models:

#A
— Classical Model
P(A) = ﬁLQ(A) (1.2)
——~  Geometric Model
m(§2)

Where m/( - ) is some measure of events in continuous space, say integral in Euclidean Space R"
mpr(A) = / dxqidxsy ... dx, (1.3)
A

[0 Basic Axioms of Probability Mearure P( -)

* Non-negativity

P(A) >0 VA e (1.4)
+ Normalization'
P(Q)=1 (1.6)
* Countable Subadditivity
P(AjUAsU---) =P(A1) + P(As) + -+, (A;ALA; Vi #j) (1.7)

where ‘countable subadditivity’ means the events can be sequentially listed. e.g. [0,1] = U, 1{z} is

not countable, intuition:

1=P(0,1]) =P | |J {=} | # ) Px)=0 (1.8)

x€[0,1] z€(0,1]

Then (2, .7, P) is probability space, where (2 for experiment outcomes and randomness, .% for events and

their algebra, P for probability measure.

O Properties of Probability:

"Note: In other sections when dealing with not-yet-normalized distribution (say in Bayesian statistics), I usually use Z as the normalize

constant, following the tradition in statistical physics where Z is the partition function.

1 -~ -
P=_P, Z_/IP’ (1.5)
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» Addition Formula
P(AuB)=P(A)+P(B)-P(ANB) (1.9)
* Monotonicity
P(A) <P(B) forACB (1.10)
* Finite Subadditivity (Boole Inequality)
P(lJA) <> P4 (1.11)
=1 i=1
* Countable Subadditivity (o-Subadditivity)
P(lJA4) <D P4 (1.12)
i=1 i=1
¢ Inclusion-Exclusion Formula (Jordan Formula)
P(|JA) = > PA)— > PANA) (1.13)
i=1 1<i<n 1<i<j<n
+ > PAINANA) — - (1.14)
1<i<j<k<n
+ (=) P41 NAsN---NA,) (1.15)
Or in condensed notation:
P(JA) =D (- > P(A;, NA;,N...NA;) (1.16)
i=1 k=1 1<51 <ja <. <jp<n
* Borel-Cantelli Lemma
D P(4,) < 0o = P lim sup Ay,) =0 (1.17)
n=1
ZP(An) =00 = IP( le sup A,) =1 if A; independent (1.18)
n=1

U An Example

We have n different balls. Draw m times with replacement. What is the number of results regardless of order

the balls drawn (e.g. {red, red, black} is the same as {red, black, red})?

The model is the same as we are ‘voting’ for n different balls, with total ballot ticket m. The m tickets are

divided by n — 1 plates (making them similar to ballot boxes), e.g. here’s a n = 4, m = 6 vote corresponding to

aresult w €

.H...{..

(1.19)
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which the same as inserting plates sequentially and then cancel the order of plates:

#Q:(m+1)*(m+2)...(m+n—1)/(n—1)!:W: (”Jrﬂ”;‘_l) (1.20)

(The idea of spacer plate is quite useful in dealing with some troublesome discrete cases, I think.)

£ 1.1: #Q of Sampling n balls m draw

Replacement
With Without
Ordered n'" Al
Unordered  ("7"71) (")

1.2.3 Conditional Probability

Motivation: To update the knowledge of probability measure.

Def. Conditional Probability of B given A:

P(AN B)
P(B|A) = 1.21
(BI4) = 5 (121)
Actually it’s a change of o-field: Q@ — B
m(B)
P(B|A) = —= 1.22
(BlA) = % (122)
U0 Application of conditional probability:
* Multiplication Formula
P(() Ai) = P(A) [ [P(Ail AL 0 A0 Ay (1.23)
i=1 i=2
* Total Probability Theorem
P(B) =Y P(A;)P(B|A;) (1.24)
i=1
where {4;} is a partition of : Q = J; A;, 4;NA; = ;50
(Actually just B C |J, A; is enough, similar for Bayes’s rule)
* Bayes’s Rule
P(A;)P(B|A; .
P(4;|B) = (4,)P(B]A;) 1<i<n (1.25)

Y P(A)P(BlA;)”  — — T

Jj=1

where {A4;} is a partition of : Q = (J; 4;, 4i N A;j = 0;;0
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1.2.4 Independency

Statistical Independency is defined as:
AUB: P(AnB)=P(A)P(B) (1.26)

Properties

* Complement set and indepency

AUB= A" 1B (1.27)

* Independency of multiple events

Aj L Ax 1L .. 1LA, @P(Ajl ﬂAjz n... ﬂAjk) = P(Ajl)P(AJQ) .. ]P)(A] ) (1.28)

Vi<ji1<jo<...<jr<n Vk<n, n<o (1.29)

Section 1.3 Random Variable and Distribution

Motivation: defining events is troublesome, and unhelpful to extract the key feature of events. A wise

approach is to map samples & events to numbers 2 — R".

1.3.1 Random Variable

Def. Random Variable: a function/mapping X defined on sample space €2, from €2 to some Z~ € R.
X(w): Q— Z R (1.30)

Note: The mapping itself is non-random, the heart of randomness is still sample w experimented.

Naturally X induces a mapping of probability measure
Fx  Z—-Q—P (1.31)

To describe the mapping of probability, def. Cumulative Distribution Function (CDF). (Here X (w) is still

used to remind the origin of randomness, in most case we simply use X. )

Fx(z) =P(X(w) <) (1.32)
« PMF:
px(z) = Fx(2h) — Fx(z7) (1.33)
PDF:
Fe(a) = I x(@) (1.34)
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+ Right-Continuity of CDF: A physical perspective is that PMF could be written as’

px(z)=> P(X =i)d(z — &) (1.35)
TEX

where discrete X take values in X. In this way for any infinitesimal interval containing z: I, > x, we have

F I’Jr - F x ), x X
FX(ZE—F)_FX(x_):/H‘pX($)d$:/HZP(X:j)é(x_j)d:E: x(@") = Fx(a7), =€

Fex 0, others

(1.36)
With such notation, in this note I sometimes ignore the difference between discrete cases / continuous cases.

» Representation of events: We could use random variable to express, say event A defined as

A={w: X(w) <z} (1.37)
« Indicator function:
1 z€A
Ipea(z) = (1.38)
0 z¢ A
¢ Convolution
-W=X+Y
furtw) = [ (o) (o = ) (1.39)
-V=X-Y
fv(v) = / fx(@)fy(z —v)dz (1.40)
- 7Z=XY
> 1
() = / ?‘fx(x)fy(g)da: (1.41)
Examples:
— Poisson’
P()\l)—I—P()\Q) NP()\l“‘)\Q) (1.42)
— Binomial
B(ni,p) + B(na,p) ~ B(n1 + na, p) (1.43)
— Gamma / Exponential
(a1, A) +T(ag, A) ~ T'(aq + az, A) (1.44)
with
e(A) =T(1, ) (1.45)

Definition of Dirac § function see section 12.4.3 ~page 334.

*More about Poisson Distribution / Poisson Process see section 12.1.4 ~page 315
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— More relations of distributions see http://www.math.wm.edu/~leemis/chart/UDR/UDR.html

— Relation between Poisson Process and Exponential and Uniform distribution see section 12.2.5 ~page 319.

« Order Statistics*

Def X (1), X(2), -+ , X(n) as order statistics of X

9Xu = n! Hf(:cz) forxy < a9 < xp (1.46)
PDF OfX(k)
gk (@) = nCR_{[F (i) L = F(ay)]" " f () (1.47)
 p-fractile
& = F~1(p) = inf{z|F(z) > p} (1.48)

1.3.2 Random Vector
A general case of random variable. Its definition is similar
Xw): Q— 2 eR” (1.49)

a n-dimension Random Vector X = (X1, Xo, ..., X,,) defined on (Q, %, P).
CDF F(z1,...,zy,) defined on R™:

F(xi,...,2p) =P(X1 < 21,..., X, <) (1.50)

Joint PDF of random vector:

_ O"F(x1,...,2y)

f@1,..,2n) 0xy...0zy,

(1.51)

k-dimensional Marginal Distribution: For 1 < k& < n and index set S = {i;.... 4}, distribution of

—

X = (X4, Xig, -, Xip)

Fs, (Xs, < @iy, Xiy < @iy, Xy, < ay) =P(Xy, <y, Xy <245 X o X, <o0)  (1.52)

k+17°

Marginal distribution:

OV FF(xy,...,2p)
95, (Tiyy ., x4y,) = /n—k f(xe, . zn)deg, .. doy, = Do, . Oz, (1.53)
A Function of r.v.
For X = (X1, Xy, -, X,,) with PDF f(X) and define
V= (¥, Ve, ) = (n(X)a(X), - (X)) (1.54)

“ A relative object is Rank statistics, see section 2.4.6 ~page 65.
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with inverse mapping
X = (X1, Xa, -, Xp) = (01(F)2a(F), -+ (V) (1.55)

then

(Intuitively: g(Y)dY = dP = f(X)dX)

Section 1.4 Expectation [, Variance var and Covariance cov

Motivation: what would happen ‘on average’?

Expectation and Variance of common distributions see section 1.1 ~page 17.

1.4.1 Expection E(-)

Expectation of r.v. g(X) def.:

/Q o) fx(@)do = [ ga)dF (@)

Elg(X)] = ¢ (1.57)
(z) fx ()
%:g

Sometimes when there are more than 1 variables, say z, y, we would use notation Ex (g(X,Y)) or Ex s, (2) (9(X,Y))
to specify the variable and distribution to avoid confusion.
Note: For discrete r.v. the expectation always exists, but for continuous & unbounded r.v. the expectation

might diverge, rigorously speaking:

E[X]3: /R|:c\f(x)d:b<oo (1.58)
O Properties of Expectation E( - ):
* Linearity of Expectation
E(aX +0Y) = aE(X) + bE(Y) (1.59)
» Conditional Expectation
E(X|A) = EI(P)((AH;‘) (1.60)

Note: if take A as Y is also a r.v. then conditional expectation is actually a function of Y’
V) =EX|Y) = /wa|y(:v)dx (1.61)

» Law of Total Expectation

Ey{Ex[g(X)[Y]} = Ex[g(X)] (1.62)
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* r.v.& Event
P(AIX) = E(Li|X) = E[P(A|X)] = E(Ly) = P(A) (1.63)
* Conditional Expectation
E[(Y)g(X)|Y] = h(Y)E[g(X)[Y] (1.64)
1.4.2 Variance var(-)
Variance of r.v. X:
var(X) = E[(X - E(X))?] = E(X?) — (E(X))? (1.65)

. 2
(sometimes denoted as o%;.)

Another definition comes from the MMSE estimation,

var(X) = minE [(X — ¢)?] (1.66)

[

its solution is ¢ = [E [ X]. See section 12.4.1 ~page 331 for more.

O Properties:

¢ Linear combination of Variance

var(aX + b) = a*var(X) (1.67)
 Conditional Variance
var(X|Y) = E[X — E(X|Y)?|Y (1.68)
* Law of Total Variance
var(X) = Evar(XY)] + var[E(X|Y)] (1.69)

Standard Deviation def. as :
ox = \/wvar(X) (1.70)

Then can construct Standardization of r.v.

Xsd = m (1.71)
1.4.3 Covariance cov( - ) and Correlation corr( -)
Covariance of r.v. X and Y:
cov(X,Y) =E[(X — pux)(Y — py)] =E(XY) — E(X)E(Y) (1.72)
And Correlation Coefficient
pxy = corr(X,Y) = Uﬁggj(y) (1.73)

Remark: correlation #- cause and effect. Detail on causal effect topic see Chapter 11 ~page 285.

Properties:
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 Bilinear of Covariance

cov(X +Y,Z) = cov(X,Z) + cov(Y, Z) (1.74)
cov(X,Y +Z) = cov(X,Y) + cov(X, Z) (1.75)

* Variance and Covariance
var(X +Y) =var(X) +var(Y) + 2cov(X,Y) (1.76)

¢ Covariance Matrix

Def ¥ =E[(X — p)(X — )] = {oi;} (where X should be considered as a column vector)

var(X1)  cov(X1,X2) ... cov(Xy,Xy)
cov(Xo, X1 var(Xs ... cov(Xq, X,
_[erex v (X Xa) o
cov(Xp, X1) cov(X,, Xa) ... var(Xy,)

Attachment: Independence:

flxi,zo, - ) =[] f(2s)
XALX; = Flay, - en) = 1 F (@) . n<oo (1.78)
E([[X:) =[] E(X;)

var(Y X;) = > var(X;)

Section 1.5 PGF, MGF and C.F

Generating Function: Representation of IP in function space. P < Generating Function.

1.5.1 Probability Generating Function

PGF: used for non-negative, integer X, which is the z-transformation of px

o0

g(s) =E(s*) =D §P(X = j),s € [-1,1] (1.79)
j=0

(] Properties

*)(0
s P(X =k) =2 k'( )
+ B(X) = (1)
» var(X) = g (1) + ¢ (1) - [¢V V)P

n
* For X1, X3, -+, X,, independent with g;(s) = E(sX?), Y = ZXi’ then
i=1

gy (s) = Hgi(s),s € [-1,1] (1.80)
i=1
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* For X; i.i.d with ¥;(s) = ¢¥(s) = E(s%%), Y with G(s) = E(s¥), W = X; + X3 + - - - + Xy then

gw (s) = G[¢(s)] (1.81)
* 2-Dimensional PGF of (X,Y)
g(s,t) =E(s¥t) =D Pxyy(X =i,V =j)s't/, s,te[-1,1] (1.82)
i=o0 j=0

1.5.2 Moment Generating Function

MGEF: used for non-negative X, which is the Laplace transformation of fx.

>, e P(X = aj)

Myx(s) = E(e*X) = (1.83)
oo e fx (w)da
Properties
* MGF of Y = aX + b: My(s) = e**M(sa)
« E(X*) = M®)(0)
« P(X =0) = SEIEIOOM(S)
* For X1, Xo,- -+, X,, independent with My, (s) = E(e®Xi), Y = zn:Xi, then
i=1
My (s) = ﬁ Mx, (s) (1.84)
i=1
1.5.3 Characteristic Function
C.F is actually the Fourier Transform (FT) of fx.
o) =B = [ e s (185)
Properties
« if E(|X|*) < oo,then
o (t) = iFE(XFe™X)  ¢R)(0) = FE(XF) (1.86)
* For X1, Xy, -+, X,, independent with ¢x, (t) = E(e®X), Y = iXi’ then
i=1
Py (t) = ﬁ ox,(t) (1.87)
i=1
* Inverse (Fourier) Transform
f(z) = % /Z e T p(t)dt (1.88)

SMore about FT see section 12.4.3 ~page 334.
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Section 1.6 Convergence and Limit Distribution

1.6.1 Convergence Mode

Convergence in Distribution X, 4 X lim F,(x) = F(z)

n—o0

Convergence in Probability X, & X : lim P(|X,, — X) >¢) =0,Ve > 0

n—reo (1.89)
Almost Sure Convergence X, 2 X :P(lim X, =X)=1
n—oo
L
L, Convergence X, — X : lim E(]X,, — X[P) =0
n—roo
Relations between convergence:
X, 2% x \
p R d
X=X X, =X
X, ﬁ) X 4;0

. m.s.
Note: Lo convergence is also denoted m.s. (mean squared) convergence —.

Useful Theorem:
« Continuous Mapping Theorem: For continuous function g(-)
1 X, 2 X = g(X,) 2 g(X)
2. X, B X = g(Xn) B g(X)
3. X, S X = g(X0) S g(X)
¢ Slutsky’s Theorem: For X, i> XY, 5e
L X, +Y, 5% X +e
2. XY, 4 X
3. X, /Y0 S X /e

* Continuity Theorem for characteristic function:

lim én(t) = o(t) & Xn S X (1.90)

n—o0

1.6.2 Law of Large Number & Central Limit Theorem
* m.s. LLN: For X; with cov(X;, X;) = 0,if i # j,and E [X;] = u < o0

—ZX L2 B Xy (1.91)
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e WLLN: For X, i.i.d. ~ fx, withE[X;] = u < 00

IS X By (1.92)
« SLLN: For X i.id. ~ fx, with E[X;] = p < o0

1 a.s.

=X B (1.93)

* CLT: For X; i.i.d. ~ fx, withE [X;] = p < 00, var(X;) = 0% < 00

) 8 o,y (199)
or in equivalent form
7 > (X - )4 N(0,1) (1.95)
X4 N, ) (1.96)
O Proof:  Denote the characteristic function of X ~ fx(z) as ¢x(t) := E [e"¥], with expectation

1 :=E [X] and variance 62 := var(X) = E [X?] —

X _
Define Z = H

The taylor series of ¢ (t) at t = 0 yields:

2

bz(t) =1— % + o(t?) (1.97)

_ X; —
The characteristic function of mean Z := Z Z; = Z P wit. X;iid. ~ fx(x)

(o
=1
itZ t. 1" 2"
_ — 1 — —
¢z(t) =E [e } = [¢Z(n)] = [1 - 2712] (1.98)
with n — oo limit:®
1 ¢ 2 X - 1
lim ¢,(t) = lim {1 - ] —e = Z=2""r% N0 ) (1.100)
n—00 n—o0 n2n o n
O
* de Moivre-Laplace Theorem is a special case of CLT at S,, ~ B(n,p)
0.5— k—0.5—
Pk < S, <m) ~ (D02 NPy g B =00 7 1P, (1.101)
V1Pq N
« Stirling Eqa. derived from CLT

\F A\ 1 k=22 p—p n n
WMDY - |~ V2 Jmo(f”) 1.102
RV ) ) (1%

SNote: if use characteristic function of X; directly, notice that
t bt t? 1

nlog( +af—ﬁ>=at_(b+a2)%+0(ﬁ) (1.99)

using the taylor series of log(1 + &) at £ = 0.
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Section 1.7 Inequalities

* Cauchy-Schwarz Inequality

E(XY)| < VE(X?2)E(Y?) (1.103)
* Bonferroni Inequality
> > PA)+ Y P(ANA)) (1.104)
z:l 1<i<n 1<i<j<n
* Markov Inequality
X
(IX]>¢) < (|a| ) (1.105)
€

with o = 1, and ¢ selected as a multiple of E [| X |]:

P(X| > mE[X]) < (1.106)
* Chebyshev Inequality
P(X ~E(X)| 2 < “ ) (1.107)
Chebyshev inequality is used to proof WLLN equation 1.92 ~ page 30
» Jensen Inequality: For convex function h(z):’
E[h(X)] = h(E(X)) (1.109)

Example of using Jensen Eqa. to proof some other inequalities:

— Non-negativity of Kullback-Leibler Divergence: For two distributions f( -) and ¢( - ), the K-L Diver-

gence is defined as

L(flo) =~ [ fa)tog G2 ao (1.110)
Take h(§) := log & a concave function for £ € (0,00) and Z := fEX; ith X ~ f(z), then
E (h(2)) —/A(logz) (%) dz— <log i ) (1111

X

<h(E (2)) zlog/ sz(z)dz:log/qwf(m)dmzo (1.112)

= — /logf d >0 (1.113)

70r equivalently for concave function h(z):

E[h(X)] < h(E(X)) (1.108)
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* Cantelli Inequality

var(X)
PIX-EX]|>N<———— 1.114
( [X] 2 )_var(X)+)\2 ( )
with A = \/var(X) := o, we have
1
P(X>E[X]+0)< =
% (1.115)
P(X<E[X]—-0)< 3
i.e. difference between mean and median is upperly bounded by standard deviation
IE[X] —med(X)| <o (1.116)
* Hoeffding Inequality: with independent r.v. sequence X; € [a;,b;], and Sy, :=>"" | X;
P(|S, —E[Sy]| > ¢) < 2exp [—282} (1.117)
! e > i (bi — a;)? '
Or in equivalent form € = nt
1< 2n%t?
P> (0 —EX)| > t) <20x [—] (1.118)
(n ; > i (bi — a;)?
For special case of [a;, b;] = [a, b], Vi, |[a, b]| := L,
1 | 2nt?
Pl— X, —E[X;D|>t] <2 - 1.11
<n§:j< X)) t) ew |- | (1.119)
The proof needs the Hoeffding Lemma: for E [Z] = 0 and Z € [a, }]
20p _ )2
E [¢“] < exp [t(bS“)] .Vt (1.120)

» McDiarmid Inequality: with independent r.v. sequence X;, and a function f(-) with bounded difference
C;.

f(Xl,...,Xn)—f(Xl,...,Xi,...,Xn>

<e¢, Vi (1.121)

we have McDiarmid inequality

2n2t?
P (X Xo) B[ (X X)) 2 1) < 2030 |- (1122)
> i1 6
Section 1.8 Multivariate Normal Distribution
General Case and more discussion see section 4.2.1 ~page 123.
Distribution of Normal r.v. X ~ N (u,0?):

1 _@-w?

f(x) = T (1.123)
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n
For X1, Xo,- -+, X, independent and X}, ~ N(,uk,a,%), k=1---,nT= chXk, (cy, const), then

k=1
n n
T~ N o Y Got) (1.124)
k=1 k=1
Deduction in some special cases:
o Given g = o =+ -+ = Uy = U, a% :ag =... :a%ZUQ,i.e. X}, 1.1.d., then
n n
T~Np) o> ) (1.125)
k=1 k=1
1 n
e Furthertakeci =co=---=¢, = —,ie. T = ZXk/n = X, then
n
k=1
_ 0'2
T=X~N(u =) (1.126)
n
1.8.1 Linear Transform
First consider €1, €2, - - -, €p, i.i.d. ~ N(0, 1), n x 1 const column vector /i, n X m const matrix B = {b;;},
m
dCf.XZ' = Z bijEj, 1e.
j=1
X1 bir bz ... bim €1 M1
S Xo bar b ... ba €2 2
g Il I el I Il IS Rl S E (1.127)
Xn bp1 bn2 ... bum €m Hn

We have: X ~ N(fi, ), where ¥, as defined in equation 1.77 ~ page 27 is

var(Xy)  cov(X1,X2) ... cov(Xy,Xn)
Lo cov(Xo, X1)  war(Xa) ... cov(Xo, X,)
¥ =E[(X - )X - i)' = BB" = | | - = {mgy s
cov(Xy, X1) cov(Xp, X2) ... wvar(Xy)
Furthur Consider Y = (Y1, - -+, ¥,)T, n x n const square matrix A = {ajj} and def. Y = AXie.
Y aiy a2 ... aip X1
Yy a1 a2 ... Q2g Xo
S D (1.129)
Y, anl1 Aanp2 ... QApn Xn

Then Y ~ N(Aji, ALAT)
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Special case: X1, - -+, Xy, iid. ~ N(pu,02), X = (X1, , X,)7,

n
E(Y:) =p ) an (1.130)
k=1
n
var(Y;) :JQZafk (1.131)
k=1
n
cov(Y;,Y5) =g Z ik (1.132)
k=1
Specially when A = {a;;} orthonormal, we have Y7, - - - ,Y,, independent
n
Y~ N1 g, 0”) (1.133)
k=1

[J Definition of Jointly Gaussian/Normal

A random vector X is called jointly Gaussian if and only if any (finite) linear combination of X is still

Gaussian (Normal)
m
> apXi, ~ N(-, ), Hondily, Virkie,, Ym < n (1.134)
k=1
Counter Example: [X, Y] in which X ~ N(0,1), Y = —X is not jointly Gaussian.

1.8.2 Distributions of Function of Normal Variable: \?, t & F
Consider X1, Xo,..., X, i.id. ~ N(0,1); Y, Y1,Y>s,...,Y,, i.id ~ N(0,1)

+ \? Distribution: Def. x? distribution with degree of freedom n:

i=1
PDF of 2:
1 T
(1) = 2 z/21, 1.136
g (x) 2n/2F(n/2)x € >0 ( )
Properties
— E and var of € ~ x2
E) =n var(§) = 2n (1.137)

— Forindependent & ~ x2 , i =1,2,... k:

k
§0= &~ Xorttm (1.138)
=1

— Denoted as I'(a, \):

- 1
— X2 (2 2y =2 )
E=2 X ~TGp) =X (1.139)
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* t Distribution: Def. ¢ distribution with degree of freedom n:
Y Y
T — y = = ~ (1.140)
\/ >ic1 X; \/ & / n
n
(Usually take v instead of n as degree of freedom for ¢ distribution)
PDF of ¢,:
v+1
F(Ll) 22\ 7 2
ty(z) = 2 1+ — 1.141
0= g (1) (1140
Denote: Upper a-fractile of ¢,, satisfies P(T" > ¢) = «:
tyo=argP(T'>c)=a, T~t, (1.142)
(&
(Similar for N, x2 and Fp,n etc.)
* F Distribution: Def. F' distribution with degree of freedom m and n:
moy?
pozimti/m ZQ/m ~ Frm (1.143)
Y X7 /n 7
PDF of F,, :
fn(z) = —=2 2 Hmz4+n)" 2 Lo (1.144)
" FEI(3) ’
Properties
1
- If Z ~ Fy, , then 7"~ Fum.
— IfT ~ t,, then T? ~ Fi,
1
— I'mnl-a =
Fn,m,a
[l Some useful Lemma (uesd in statistic inference, see section 2.3.3 ~page 54):
» For X, Xo,..., X, independent with X; ~ N (u;, 0?), then
n 2
X. —
3 (“) ~ X2 (1.145)
; 0
=1
s For X1, Xo,..., X, iid.~ N(u,o?), then
X —
T= vl 5 ) ~tp_1 (1.146)
For X1, Xo,..., Xy iidi~ N(p1,02), Y1, Ya, ..., Y, iid.~ N(p2,0?),
—1)85% —1)53
denote sample pooled variance S2 = (m = 1)St + (n = 1)5 , then
m4+n—2
X—¥)— (-
7= )= (=) [ mn tnin—2 (1.147)

S. m+n
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 For X1, Xo,..., Xpiid.~ N(u,0%),Y1,Yo,..., Y, iid.~ N(uz,0?), then
St o3
T — So2 ™ Fnotans (1.148)
* For X1, Xo,..., X, iid. ~ ¢()\), then
B n
22X =2)> X ~x3, (1.149)

i=1

Remark: for X; ~ e(A) =T(1,A) = 2AY " | X; ~T'(n,1/2) = x3,.




Chapter. Il  ZiTHEEER

Instructor: Jiangdian Wang

Statistical Inference: Given sample X = (21,9, ..., zy), Wwe want to estimate some features of the popu-

lation. This part focus on parametric statistical inference, thus our task is to estimate/testing parameters.
[0 Example of statistical inference
* Sample item x;, estimate its mean and variance

 Sample item z; = (&}, y; ), use multivariate linear model Y ~ X’ B + Bo, estimate slope & intercept 5 and

variance o2

0 Two main tasks of Statistical Inference
» Parameter Estimation
— Point Estimation: section 2.2 ~page 43
— Interval Estimation: section 2.3 ~page 52

* Hypothesis Testing: section 2.4 ~page 57

> R. Code

Example data x, y, df used in this section:

| |set.seed (42)

2)
2.1, sd = 2.1)

2 |x <= rnorm(n = 50, mean = 2, sd

3|y <= 0.5%x + rnorm(n = 50, mean

4 |df <- data.frame(x=x,y=y)

Section 2.1 Statistical Model and Statistics

Random sample comes from population X . In parametric model case, we have population distribution fam-

ily:

F ={f(:0)|0 € ©} 2.1)

where parameter 0 reflect some quantities of population (e.g. mean, variance, etc.), each ) corresponds to a
distribution of population X.
37
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Sample space: Def. as 2" = {{x1,22,...,2n},Vz;}, then {X;} € 2" is random sample from population

—

X ~ f(x;0).

2.1.1 Statistics

Statistic(s): function of random sample T (X1, Xs,...,X,), but not a function of parameter.!

[l Some useful statistics, e.g.

* Sample mean (Consider X; i.i.d.)

_ 1 &
X = Z X; (2.2)
=1
» Sample variance
1 < _
5% = -~ X)? .
— 2 (&K= X) (2.3)
=1
* Sample moments
— Origin moment
k
1
a”yk:7ZXik k:172)37"' (24)
(i
— Center moment .
1 _
Mp ke = — Z(Xi — X)"” k=23,4,... (2.5)
n
i=1

¢ Pearson’s Correlation Coefficient r

> (Xi — X)(Y; - Y)

rxy = cov(X,Y) = - - (2.6)
VI (X = X2 /S (% - V)2
Multivariate version see equation 4.24 ~page 117
 Order statistics
(X(l), X(Q), e ,X(n)), for X(l) < X(2) <...< X(n) (2.7)
» Sample p-fractile
mp = Xm), m=[(n+1)p] (2.8)
» Sample coefficient of variation
S
D= — 2.9
r== 2.9)
» Skewness and Kurtosis
. m . m
hi="%5 =53 (2.10)
mn72 mn,Z

"Maybe to be more precise, the sample are drawn from the distribution f(x; 5), so naturally the data { X} is related to parameters.
Here a better description would be ‘expression of statistics does not contain parameters explicitly’. And thus we could calculate the value

to statistics as long as we have the sample data. Detail see Sampling Distribution.
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> R. Code

R. code for some statistics

1 |# mean function

2 |mean (x)

3 |mean (df)

4 |# variance / covariance
s | var (x)

6 |var(x,y)

7 | var (df)

s [cov(x,y)

9 | cov (df)

10 |# correlation

| cor(x,y)

12 | cor (df)

13 |cov2cor (cov (df))

14 |# moments

15 | library ('moments')

16 |moments::moment (df, order = ORDER _OF M, central = FALSE, na.rm =
FALSE)

] Properties

SamplingDistribution 7" is a function of random sample X = {X;}. Since the sample is drawn ‘at random’,

thenT'(X) certainly also has its own distribution (say g7 (t)) called Sampling Distribution.2

For X; i.i.d. from X ~ f(z) with population mean y and variance o

+ Calculation of sample variance S

(n—1)8%=> a7 — na’ (2.11)
=1
+ E and var of X and S? )
EX)=p  var(X)= (; E(S2) = o2 (2.12)

Further if X; i.i.d. from X ~ N(u,0?) where y and o2 unknown.

+ Independence of X and 523
X152 (2.13)

*Now recap the statement that “statistic is not a function of parameter 6’: Recall that random variable (the sample is a set of r.v.) X is
a mapping, so T : Q — 2 — R also. Parameter 6 does not involve in the mapping process, instead it influence the sample probability
Py(X), and thus the distribution of statistics gr(¢(X);6). Sometimes I use notation like 7'(X;6) to remind me of this, but actually
statistic should not contain 6 (at least in its expression).

3 A brief proof is here https://vincent19.github.io//texts/indepencyXS/
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o N
— Distribution of X = - z; X;
i

X~ N —) (2.14)
1 < .
— Distribution of $? = — > (X - X)?
=1
n—1)5?
e @.19)

Comment: the independence here can explain the n — 1 degree of freedom of 2

2.1.2 Exponential Family

Motivation: parametric statistical inference needs a (priorly assumed) distribution family, e.g. Normal
N(u,0?), Poisson P()\), Gamma I'(, \), etc. Exponential Family is a framework to represent them in the

same form Exponential Family can extract some key features of the distribution, and has some nice properties.

—

Def. Fo = {f(x;60]6 € ©)} is Exponential Family if f(z;0) has the form as

k
f(:0) = C(O)h(x) exp [Z Qi0)Ti(x)| e (2.16)
i=1
Or equivalently express ¢(f) = In C(6)
k
f(x:0) = h(z) exp [Z QiO)Ti(x) +c(f)| e (2.17)
i=1

— — — —

Canonical Form: Take Q;(0) = ;, then @ = (¢1, 92, ..., ¢r) =(Q1(6),Q2(0),...,Qk(0)) is a transform

from © — OF*, s.t. .% has canonical form, i.e.

k
f(z; @) = C*(@)h(x) exp [Z pili(x)| FeO (2.18)
i=1
©* is canonical parameter space.
J Examples of Exponential Family
+ Normal Distribution X ~ N(u,0?)
1 (x — p)? 1 22 — 2y +
2
. — _ = — 2.19
f(xa wn, o ) \/%O’ €xp |: 252 \/%O’ exXp 252 ( )
1
c(0) = (2.20)
2o
1
0)=—— 2.21
T)(z) =2* (2.22)
Q2(0) =55 (2.23)
Ty(z) =2 (2.24)
12
0) =— 2.25
Qa(0) =~ 2 (2.25)

T3(z) =1 (2.26)
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+ Gamma Distribution X ~ I'(a, )

f(z;a, ) :F)(\Z)a:a_le_’\x (2.27)
)\Oé

0 =Fay (2.28)
Q1(0) =— A (2.29)
Ti(z) == (2.30)
Q2(0) =a — 1 (2.31)
Ty(z) =log (2.32)

* Binomial Distribution X ~ B(n,p)
p(k;n,p) = <Z>p’“<1 —p) k= (Z) (1-p)"exp [k log p} (2.33)
c)=(1-p" (2.34)

n
h@) = < k> (2.35)
Q1(0) =log (2.36)
@) = (2.37)

2.1.3 Sufficient and Complete Statistics

(Note: For simplification, the following parts denote 5, T,...as0,T,... etc.) Now say we are trying to esti-

mate 6 by a statistic T()z ). We hope that T’ (X' ) contains ‘necessary/enough useful information’ when estimating

0.4

» A Sufficient Statistic T(X ) for 6 contains ‘enough’ information of sample when infering 6, knowing more

—

would not help us get a better estimation. i.e. the (conditional) distribution of sample given 7'(X) is the

same as that given the parameter.

— —

F(X; (X)) = f(X;T(X),0) (2.38)

Or, T(X ) condensedly stores all information about ¢ contained in sample X.
Properties
— Factorization Theorem T'(X) is sufficient if and only if f ¢(Z;0) = f(Z;0) can be written as
f(Z;0) = g (¢(Z); 0) h(Z) (2.39)

— If T(X) sufficient, then 7"(X) = ¢[T'(X)] also.(requires g single-valued and invertible)

“Intuition: ‘Information’ might be described by “distribution of T'(X) for different 6°. i.e. the distribution family {gr : 6 € ©}

measures the performance of estimator.
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— If T(X) sufficient, then [T, T}] also.
— Sufficient statistic is not unique.

— Usually dimension of Ty and 6 equals.

» A Complete Statistic 7'(X) for 0 satisfies

any ¢(-) with: E [¢(T(X’))} = 0, V0, must have P (¢()Z') - o) — 10 (2.40)
Explanation: T()f ) as a function of sample, has its sampling distribution, say 7" ~ gr(t). ‘Complete’ is the
description to the distribution family of T’ (X' ): { gr (t(w?@)) 10 e @}. The above equation is rewritten

as

/90(75)91’(75) dt=0v0 = ¢(-)=0as. V0 (2.41)

compl stat

Another perspective: Recall that [ o(u)(u) du is a kind of inner product (z, 7), the above statement is saying

that: functional space of g7, denoted span{ gz (¢); V0} is a complete function space.

Another statement for complete statistic is that

o(T) # 0 Y0 = E[p(T(X))] # 0 (2.42)

Intuition: Not complete means 3¢( - ), 0 s.t. E [gzb(T (X ))] = 0, and also 3 another function ¢(-) =
¢(-) + const so that E [QZ;(T()? ))} can be any const — some information is unnecessary. So maybe

complete means containing‘ no extra’ information, to a certain degree.

Properties

— If T(X) complete, then T"(X) = g[T'(X)] also.(requires g measurable)

— A complete statistic does not always exists.
A Complete Sufficient Statistics: with both sufficient and complete properties satisfied.

A Minimal Sufficient Statistics 7'(X) for 6 contains ‘just enough necessary’ information about 6. Defi-
nition:

V sufficient statistic 7'(X), Jqi(-), st T(X) = qT(T(X')) (2.43)

Intuition: T'(X) is a function of T(X) suggests that 7" contains no more information than 7. And if

—

sufficient statistic 7" can be function of all sufficient statistics, then 7'(X) contains ‘enough and minimal

information’ about 6.
Properties
— Sufficient & Complete = Minimal Sufficient (£)

Sufficient as ‘enough’ + complete as ‘no extra’ = minimal sufficient as ‘just enough’.

— A minimal sufficient statistic does not always exists.
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— If minimal sufficient statistic exists, then any complete statistic is also minimal sufficient = complete

& sufficient.

» An Ancillary Statistic S ()? ) is a statistic whose distribution does not depend on 6

Basu Theorem: X = (X1, X5, ..., X,,) is sample from .% = {f(z;0),60 € ©}. T(X) is a complete and
minimal sufficient statistic, S(X) is ancillary statistic, then S(X)1L7(X). Intuitively S(X) contains no

—

information about # and minimal sufficient 7'(X') contains all and necessary information about 6.

» Exponential family: For X = (X1, Xo,...,X,,) from exponential family with canonical form, i.e.
k
F(@0) = CO)MT) exp | Y OTi(T)|, €O (2.44)
i=1

Then if © € R¥ interior point exists, then T'(X) = (T1(X), To(X), ..., Tp(X)) is sufficient & complete

statistic.

Section 2.2 Point Estimation

For parametric distribution family .% = {f(z,6),0 € ©}, random sample X = (X1, X5, ..., X,,) from .Z.
g(#) is a function defined on O.

Mission: use sample {X;} to estimate g(6), called Parameter Estimation.

o Point Estimation vV
Parameter Estimation (2.45)

Interval Estimation

Point estimation: when estimating 6 or g(6), denote the estimator (defined on sample space 27) as
é(f) estimates 0 or Q(X:) estimates g(9> (2.46)
Estimator is a statistic, with sampling distribution. In the following part we only give the expression for
6(X) estimates, g (g version is similar).
2.2.1 Optimal Criterion

Some nice properties of estimators (that we expect). They might not be satisfied simultaneously, e.g. we

usually have to face trade-off between bias & precision.
« Unbiasedness: say §(X) or §(X) is unbiased estimator of 0 or g(f), if
E(0) =0, E(9)=g(0) (247)
Otherwise, say 6 or g is biased. Define Bias:

Bias(0) :=E() — 0 (2.48)
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in this way, an unbiased estimator is one with Bias(f) = 0

Asymptotic unbiasedness with n as sample size:

lim E(6,(X)) =6 (2.49)

n—o0
« Efficiency: say 6 (X) is more efficient than f(X), if

var(él) < var(ég) Vo € © (2.50)

Can we find a estimator with minimum variance / the most efficient? See section 2.2.4 ~page 47.

* Minimum Mean Squared Error (MMSE): Most efficient in the sense with bias-variance trade-off. More

about Minimum MSE estimation see section 12.4.1 ~page 331.

MSE = E[(d — )?] = E [(é “E [9} +E [9} - 9)2} = var(d) + [Bias(6))? @.51)

For unbiased estimator, i.e. Bias(d) = 0, we have

MSE = E[(0 — 0)?] = var() (2.52)

More about MMSE see section 12.4.1 ~page 331.
* (Weak) Consistency
lim P(|0,(X)—0]>e)=0 Ve>0 (2.53)
n—oo

* Asymptotic Normality

b — 0% N(0,02) (2.54)

2.2.2 Method of Moments

Review: Population moments & Sample moments

o, = E(XF) e = E[(X — E(X))¥] (2.55)
1 & 1 & _

r=ap =Y Xk " :A:—E:XZ-—X’“ 2.56

An i = Qg n 2 Mk = flk ni:1( ) (2.56)

Property: a,  is the unbiased estimator of ;,.(while m,, j, unually biased for 1)

For sample X = (X1, Xo,...,X,,) from.% = {f(z;0,0 € ©)}, unknown parameter (or its function) g(6)

can be written as

9(0) = G(a1, g, . .., ag; pa, 13, - - -, f11) (2.57)

Then its Moment Estimate §(X) is

Q(X:) - G(an,h an,2y -+, a‘n,k; Mp2,Mn3,. .- 7mn,l) (258)
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Example: coefficient of variation v & skewness 3;
Z(Xz - X)g
R S ~ mp =
r=2 5l_m 3 — =t . (2.59)
n,23/2 n B 2
>0 0]
i=1
U Note:

» (G may not have explicit expression.

* Moment estimate may not be unique.

k k
e IfG = Z ci; (linear combination of «, without 1), then g(}? ) = Z ¢iyp,; unbiased.
i=1

i=1
Usually g()? ) is asymptotically unbiased.

* For small sample, not so accurate.

* May not contain all the information about 6, i.e. may not be sufficient statistic.
* Do not require a statistic model, as long as you can express G(. . .).

2.2.3 Maximum Likelihood Estimation

For sample X = (X1, X2,

, Xp) with distribution f(Z;0) from .% = {f(x;6),0 € ©}, def. Likelihood
Function L(0; Z), defined on O (as a function of §)

L(0;%) = f(Z;0) e, 7e¢Z (2.60)
for X; i.i.d. ~ f(z;0) case:
L(0; %) = [ [ f(xi;0) (2.61)
i=1
Also def. log-likelihood function ¢(6; &) = In L(6; &).
A Maximum Likelihood Estimator é()_f ) for 6 maximizes (or finds the upper bound) likelihood, or equiv-
alently log-likelihood:
L(6; %) = sup L(6; &) < £(0; %) = sup £(0;F), Te X (2.62)
0eO© [dSS)
(] Identification of MLE
* Differentiation: Fermat Lemma
oL 0*L
20, i = 26,00, ezénegative definite Vi,j=1,2,...,k (2.63)

* Graphing method.
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* Numerically compute maximum.
L Properties
* Not Always unbiased, an example is variance estimator, where
1 n
ove =~ (3 — T)° (2.64)

=1

« Invariance of MLE: If § is MLE of 6, then /(f) is MLE of h(f), where h( -) is an invertible function.

0 is a function of T,i.e.

* Asymptotic Normality:

i.€.

We will later see (in the next section) that ag is the inversed Fisher Information.

-1
i % v, L ()

)
1 Comparison: MoM and MLE

* MoM do not require statistic model; MLE need to know PDF.

¢ MoM is more robust than MLE.

J MLE in Exponential Family
For sample X = (X1, X»,..., X,,) from canonical exponential family .# = {f(z;0),0 € ©}

6:(917'”7914)6@

k
f(x;0) = C(0)h(x) exp [Z 0:T;(x)
=1

Likelihood function L(¢, ) = [[}_,; f(x;; 0) and log-likelihood function I(6, Z)

n k n
L(0,&) = C™0) [ [ hlwj)exp | D 0: ) Ti(xy)
j=1 i=1  j=1

n k
00,%) =nInC(0) + > Inh(z;)+ > 6y Ti(x;)
Jj=1 J

i=1  j=1
Solution of MLE: (Require 6 € 0)

n 9C(0)
C(0) 00;

== Ti(xj), i=12...k

6=0 j=1

MLE and Sufficiency: T' = T'(X1, Xo, ..., X,,) is a sufficient statistic of ¢, if MLE of § exists, say 0, then

(2.65)

(2.66)

2.67)

(2.68)

(2.69)

(2.70)

@2.71)

(2.72)
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2.2.4 Uniformly Minimum Variance Unbiased Estimator
Recall MSE: If §(X) is an estimator of g(f) ,then MSE
MSE(§(X)) = E[(9(X) — 9(9))*] = var(§) + [Bias(9)]” (2.73)

Note: Unbiased estimator (i.e. Bias(g) = 0) is not unique; and not always exists. But now anyway for

UMVUE we only consider the case that unbiased estimators of g(6) exists, say §(X ), then
MSE(§(X)) = var(g(X)) (2.74)
If V unbiased estimate §(X ), § satisfies
var[§(X)] < var[g(X)] (2.75)

Then §(X) is Uniformly Minimum Variance Unbiased Estimator(UMVUE) of ¢(6)
[l How to determine UMVUE? (Which is not an easy task)
1. Zero Unbiased Estimate Method

X) be an unbiased estimator E [g(}? )} = 0 with var(g) < oco. If V other unbiased estimator

Let g(
E({(X)) = 0, § holds that

E(I(
cov(g, ) =E(§-1)=0, Voe® (2.76)
Then g is a UMVUE of g(0) (sufficient & necessary condition).

2. Sufficient and Complete Statistic Method. This method relies on two theorems:

« Rao-Blackwell Theorem: For T'(X) sufficient statistic, §(X ) unbiased estimate of g(6), then
W(T) = E(g(X)|T) @.77)

is an unbiased estimate of g(#) and var(h(T)) < var(g).

Remark:

— A method to improve estimator.

— A UMVUE has to be a function of sufficient statistic.

« Lehmann-Scheffé Theorem: For T'(X) sufficient & complete, §(7'()X) an unbiased estimate of
g(T(0)), then §(T'(X)) is the unique UMVUE.
Using this theorem, we can actually construct UMVUE by conditional expectation: with any unbiased

estimator §(&) and sufficient & complete statistic (X ), we have
E [g(Z)|T(Z)] the unique UMVUE for g(6)
3. Cramer-Rao Inequality

Core idea: determine a lower bound of var(g).

Consider § = 6 (One dimension parameter); For { X;} i.i.d. f(z,0): def.
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* Score function: Reflects the steepness/slope of likelihood function.

Oln f(%;0) _ 94(6;7) _ z": Oln f(x;;6)

S@0) =% =2 90

(2.78)
i=1

Property:’
E[S(X;0)] =0 (2.82)

* Fisher Information: Variance of S(Z;6), reflects the accuracy to conduct estimation, i.e. reflects

information of statistic model that sample brings.°

(8lngéf; 9))2

Consider .# satisfies some regularity conditions(in most cases, regularity conditions do hold), then the

1(0)=E

02 1In f(Z;0)
_E { P ] (2.89)

lower bound of var(g) satisfies Cramer-Rao Inequality:

war(g() = L 290
Special case: g(6) = 6 then
var(f) > n[l( 7 (2.91)
note:
* C-R Inequality determine a lower bound, not the infimum(i.e. UMVUE= var(g(f ) = [‘Z/;?g]; ).
» Take ’=": Only some cases in Exponential family.
Proof of E(S(Z;0)) =
E(510) :/f(f; 9)%;‘%;9) dz (2.79)
= [ 10 g 2:80)
g [ r@oyar= - 081)
SProofof 1(0) = E (m‘lgff;e))?} =-E [%};
0= a?T (S10) (2.83)
/aoT {%f@ﬂw,@)} dz (2.84)
= / {762;;22? % f(z.0) + alngéx :6) 8’;(;9)} aF (2.85)
/82(191192;;9 1(7:0) dF 81n£éa: :0) alnafe(;’ 9)}6(3&79) iz 2.86)
(anﬁnﬂg(;ﬂT& ) (8lnf i 0) Glnafe(;c 9)) 287

& 1In f(76)\ dln £(%;0) &1n f(Z;0)
e (W) = ‘E< a0 207 ) et
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* Efficiency e;: How good the estimator is.
"(0)]2/(nI(6
oo (0) = LOLLOIO) o)
var(j(X))
4. Multi-Dimensional Cramer-Rao Inequality
ReDef. Fisher Information:
Oln f(Z;0) Oln f(7;0)
10)={I;;(0)} ={E 293
0 = o) = & | (205 el 2.93)
Then covariance matrix ¥(6) satisfies Cramer-Rao Inequality
2(0) = (nI(60)™" (2.94)
Note: ‘>’ means ‘>’ holds for all diagonal elements, i.e.
. (6
var(0;) > M, Vi=1,2,...,k (2.95)
n
2.2.5 OLS, MoM, and MLE in Linear Regression
Note: More detailed knowledge see Chapter 3 ~page 71 Linear Regression Analysis.
(] Linear Regression Model (1-dimension case):
yi = Bo + Brzo + €& (2.96)
where (g, 81 are regression coefficient, and ¢; are unknown random error.
Basic Assumptions (Guass-Markov Assumption):
Zero-Mean: E(¢;|z;) =0 (2.97)
Homogeneity of Variance: var(e;) = o> (2.98)
Independent: ¢; are i.d. (2.99)
further for MLE we need normality assumption
e ~ N(0,0?)
Mission: use data {(x;, y;)} to estimate /3y, 31 (i.e. regression line), and error ;.
1. OLS (Ordinary Least Squares): Take 3y, 51 so that MSE min, i.e. SSE min
n
(Bo, B1) = argmin Y _(y; — Bo — P1:)? (2.100)
i=1

(Express in Matrix Notation equation 2.118 ~page 51, so that it can be generalized to multidimensional

case) SSE can be expressed as the Eucliean Distance between {y;} and {3 + f12:}, i.e.

B = arg min D(y, X )
B

(2.101)
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50
i.e. 3 is the Projection of y onto hyperplane X, then
(XB)'(y—Xp)=0=f=(X"X)"'XTy (2.102)
Solution for 1-D case: ) )
y— bz
~ n
- | = 2z =)y — ) (2.103)
/81 n
> (z; —z)?
L =1 i
So get regression line:y = Bo + Bz
Def. Residuals
e =é =y — i = yi — (Bo + Bizy) (2.104)
Residuals can be used to estimate ¢;: F[(¢;)?] = o2
n
— Bo — B1xi) (2.105)
2. MoM: Consider r.v. € ~ f(g;z,y, Bo, B1), sample {¢;|e; = y; — So — f1x;}, then obviously
€E=y—Po—Hz (2.106)
Take moment estimate of ¢, we have
E(e) =0 E(e;x;) = 0 (note that E(e|x) = 0) (2.107)
LS i~ o~ B =
= 0 — Brwi) =
ie.dn ' (2.108)
EZ? 1551( Yi /BO_/BIJ%)—
Solution:
Bo =y— bz
. Y@ - D)y - 9) (2.109)
G >
(the same as OLS estimation)
Moment estimate of 2 .
. 1 5 5
52 = > (yi — Bo — bras) (2.110)
=1
3. MLE: Assume ¢; ~ N(0, 02), then y;|x; ~ N(Bo + B12:,02). Get likelihood function:
n s — By — By
(BOaBlvO-Q;xlv"'7xnay17"->yn) = (27TU ) 2 exp |:_211(y1 2050 51 ’L):| (2111)
Log-likelihood:
JYn) = —5 ln 2m0?) Z — Bo — Brz;)? (2.112)

2
E(BO?ﬁlva- XLy e ey Ty Y1y e -
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MLE, use Fermat Lemma:
L 1
— =0 =-— i — Bo — i) =20
660 0_2 ;(yl /80 Bl$l)
ol 1
55, =0 = = = ) =0 2.113)
ol n 1 1 "
— =0 = ——-—=+ - i — By — ) =0
do? 2 02 * 2(02)21_1(% o = Frm)
L —
Solution:
o =17 — T (2.114)
n - — —
>ic1 (T — T)
1« s a
62 == (yi—Bo— Pz (2.116)
" =1
0 Linear Regression Model (Multi-dimension case):
Detailed derivation see section 3.3 ~page 81
Yi = Bo + Brxi1 + Boxiz + -+ Bpxip + € (2.117)
Denote: E: (Bo,B1y---» Bp), Ti = (1, zi1, Tiz, - .., Tip), then for each i: y; = 2l B+ ¢;
Further denote: Matrix form:
Y1 I z11 ... 21\ [Bo €1
Y2 1 xo1 ... 2 B1 €2 -
y=|""=. "7 " +]| T |=xF+¢ (2.118)
Yn 1L zp1 .. Ty Bp €n
Basic Assumptions: Gauss-Markov Assumptions and Normal Assumption (for MLE).
Residuals:
ei=¢& =y — i =y —xl B (2.119)
Def. Error Sum of Squares (SSE)
n n
SSE=) e =) (yi—a!B)’ (2.120)
i=1 i=1
Estimator exists and unique:(62 is after bias correction)
f=(X"X)"xTy
1 n
6h = - > (yi— ] B)?
i=1
1 = .
52 = r——T > (i — ] B)? (2.121)

i=1
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> R. Code

Example of linear regression model Y = By + 25 + ¢

1 |1mfit <- Im(y~x, df)

> | summary (lmfit)

2.2.6 Kernel Density Estimation

Given random sample { X, }. Def. Empirical CDF.
. 1 &
Fa(w) = = Teoox,)(2) (2.122)
i=1

Problem: Overfitting when getting f. Solution: Using Kernel Estimate, replace [(_ ,(-) with Kernel
function K ( - ), then

A F, hy) — Fp(z — hy R - X;
fula) = T )th (@ )znhn;K(whn ) (2.123)

where h,, is bandwidth. Take proper kernel function K to get estimate of f.

Kernel density estimation can be considered as a convolution ® of sample { X;} and kernel function K ( - ).

. 1 <&
fro = n;é(a:—Xi)e@K(a:) (2.124)
1=
(1 Useful Kernel Functions
L1y, Square Kernel
[ 272}
(1 = |z_1,15 Triangle Kernel
1T a2 .
K(z) = \/TTTG z, Gaussian Kernel (2.125)
1
(1+22) Cauchy Kernel
1 1 (sinz/2)>
%sinczg =5 <512;c2/ > , sinc Kernel

> R. Code

Plot kernel density in R.

1 |plot(density(x, kernel = KERNEL_TO_USE))

Section 2.3 Interval Estimation

o Point Estimation
Parameter Estimation (2.126)

Interval Estimation /
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Interval Estimation: to estimate g(6), give two estimators §1(X ), §2(X) defined on 2 as the two ends of
1(

(X
interval (i.e. give an interval [§1(X), §2(X)]), then random interval [§;(X), §2(X)] is an Interval Estimation
of g(0).

A NOTE: Here g(#) is the parameter, which is fixed, while confidence interval, as a function of data,

is random. So all the probabilities discussed below are Probability that the interval covers the true

value, rather that the true value falls in the interval. There is a huge difference.?

“A good example: Consider a bi-classification task into 1 or |}. A confidence interval algorithm can randomly produce
{1,4} 19 times, and @ 1 time. This is still a 95% cofidence interval algorithm (covers true label 19 in 20), but true label falls
in {t, }} with pr 1, and in @) with pr 0.

2.3.1 Confidence Interval

How to judge an interval estimation?

* Reliability

Py, 5. ([91, G2] 2 9(9)) (2.127)

¢ Precision

E(g2 — §1) (2.128)

Trade off: (in most cases) Given a level of reliability, find an interval with the highest precision with reliability

above the level.

O For agiven 0 < o < 1, if

P(g1 < g(0) <o) 21—« (2.129)

then [§1, g2] is a Confidence Interval for g(6), with Confidence Level 1 — a.
Confidence Coefficient:

inf P | 2.1
ot (0 € CI) (2.130)

Other cases:

* Confidence Limit: (One-way) Upper/Lower Confidence Limit

Plg<gu)>1-a (2.131)
Plgr<g)>1-a (2.132)

* Confidence Region: For high dimensional parameters § = (g1, 92, - - -, gk)
P(GeS(X))>1—a V9eO (2.133)

Mission: Determine g1, Go.




54 CHAPTER 2. %it3Ewi3R o vincent19

2.3.2 Pivot Variable Method

Idea: Based on point estimation, construct a new variable and thus find the interval estimation.

Def. Pivot Variable T, satisfies:
» Expression of 7" contains 6 (thus 7" is not a statistic).
+ Distribution of 7" independent of 4.’

In different cases, construct different pivot variable, usually base on sufficient statistics and transform.

Knowing a proper pivot variable 7" = T'(¢, g(0)) ~ f, (f is some distribution independent of 0), ¢ is a

sufficient statistic), then we can take 7" satisfies:
P(fig <T<f3)=1-0 (2.134)
Construct the inverse mapping of T = T'(, g(9)) = ¢(0) = T~ 1(T, ¢), we get
PIT ' (fios, @) <G < T '(fa, @)l =1 —a (2.135)

Thus get a confidence interval for § with confidence coefficient 1 — «.

2.3.3 Confidence Interval for Common Distributions

Some important properties of x2, ¢t and ' see section 1.8.2 ~page 34.

1. Single normal population: X = {X1,Xo,...,Xp} € Z iid from Normal Distribution population

N(u,0?). Denote sample mean and sample variance:

o _1¢ 2 1 )2 1 2
X = - z;Xi S = Z;(X’ -X) S, = - z;(XZ — ) ,(for the case p known)
1= 1= 1=
(2.136)
Estimating y & o%: construction of pivot variable under different circumstances:
2. Double normal population: X = {X1, Xs,..., X} iid. from N(py,02); Y = {V1,Ys,...,Y,} iid.
from N (u2,03)

Denote sample mean, sample variance and pooled sample variance:

o1 s 1 . s 1 ,

X=— 2 X; Sy = e i:1(Xi - X) Sh = — ;(XZ- — p1)?, (1 known)  (2.137)

= 1 <& 9 1 n - - 1 )

Y= ;Y S =— ;(Y ~Y) Spa = ;(Y — j2)?, (j2 known)  (2.138)
g2 _ (m—1)S% + (n —1)5% 0139

“ m-+n—2

"Comment: T'(X, 6) is both function of sample X an parameter in statistics model. Note that X also depends on 6, but is fixed once

we complete a sample.
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Estimation Pivot Variable Confidence Interval
X — _ _
o2 known, estimate i | Z = v 2 ~ N(0,1) X - iNQ,X +-Z_Na
o \/ﬁ 2 \/ﬁ 2
2 : V(X — p) o O o, O
o unknown, estimate y T 5 ~ tn—1 X — %tn_lvg,X + %tn—l,%
nS? nS%2  nS?
© known, estimate o2 T = —2“ ~ X2 2—”, 5 K
g Xn o Xn 1—-<
) 2 K 2
. —1)5?2 —1)8% (n—1)$?
v unknown, estimate 02 | T = (n 2) ~ Xn—1 n 3 ) ; (nQ )
g Xn-1,2  Xp-11-2
' 2 2 2

(a) Estimating pq — pa:

When 0% #* O'% and unknown, estimate j1; — po: Behrens-Fisher Problem, remains unsolved®, but we

can deal with simplified cases.

Estimation Pivot Variable Confidence Interval
2 2
_ of o
L o X —Y —Noy/ L+ 2,
o1 & o5 known, XY — (1 — p2) m.on
estimate p3 — po oy | 03 X -V 4+ Nay/ L1 22
m n 2V m n
_ 1 1
_ _ X-Y -5t 9o/ — 4+ —,
0? = o2 unknown, X =Y — (1 — p2) T2\ m
] T = I 1 ~ tm+n72 1 1
estimate (11 — U2 Son] — + = X -V + Swtm+n72,% — “
m n
B _ SQ 52
Welch’s t-Interval X-v XY =Ny o+
elch’s t-Interva -Y — — m n
h 1 h te S2 (u1S2 ) s, NO.D) St | S3
(when m, n large enough) °X | PY X —-Y + Na 1_’_2}
m n 2 m n

o2
(b) Estimating —%:
P

8 An approximation is Welch-Satterthwaite equation. Detail see section 14.1.2 ~ page 361.
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Estimation Pivot Variable Confidence Interval
S 1 Sh 1
2 S2 52 S2 F_ . o’ S? _a
111, (12 known, estimate % F= %% o B2 Qm,m 3 Phe ) mn,1-%
72 S 2 or |2ip L S
m,mn,s n,m,s
532 2 Sﬁg 2
T RN S
S 2 (o] ’ 2 «
141, f1o unknown, estimate % = —g% ~ Fn1m—1 Sy ]Zm_lvn_l’i Sy };m_l’”_l’l_i
05 S5 03 S5 " S5 P
or @ mfl,nfl,%7@ n—1m-1,%
3. Non-normal population:
Estimation Pivot Variable Confidence Interval
Uniform Distribution: X X
B T="0 pyo,1) [X(n), n(”)}
X i.i.d. from U(0,0) 0 Vo
. C 2 2
Exp(:nentlal Distribution: T = 20X ~ 2, Xgml:% 7 X2n7_%
X iid. from e(\) 2nX  2nX
Bernoulli Distribution: X—-90
- T= @((1 5<)> % N(0,1) _
X iid. from B(1,46 - _ X(1-X) - X(1— X
(1.9) {X_Na,/H,Xwa Xd-%)
2 n 2 n
Poisson Distribution: X —\ _ X - X
N 7o VX )i>N(o,1) X — Noy/ 2, X+ Ney /=
X iid. from P()\) VX 2V 2Vn

4. General Case: Use asymptotic normality of MLE to construct CLT for large sample. MLE of 6 satisfies:

where 6* is MLE of 6. Replace

If 1(0) is unknown, we can estimate it by sample:

confidence interval:

\/ﬁ(é*_e)iwm,[(lm)
0 by o%(6*), then
T:M&N(o,n
a(6%)
o Tromp@oN?] & [0 f(zi0)\>
fo =2 | (“2E0) | <55 ()
- o)+ ot

(2.140)

(2.141)

(2.142)

(2.143)
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2.3.4 Fisher Fiducial Argument*

(Not complete yet) Idea: When sample is known, we can get *Fiducial Probability’ of 0, thus can find an

interval estimation based on fiducial distribution.(Similar to the idea of MLE)

Remark: Fiducial probability (denoted as I@’(G)) is ’probability of parameter’, in the case that sample is
known. Fiducial probability is different from Probability.

Thus get
Pg <g(0) <o) =1-a (2.144)

Section 2.4 Hypothesis Testing

Hypothesis is a statement about the characteristic of population, e.g. distribution form, parameters, indepen-

dency, etc.

Mission: Use sample to test the hypothesis, i.e. judge whether population has some characteristic.

2.4.1 Basic Concepts

Parametric hypothesis testing.

For random sample X = (X1, X5, ..., X,,) € 2 iid. from.Z = {f(z;0);0 € O}

* Null Hypothesis Hy & Alternative Hypothesis H; (Sometimes denoted H,): Wonder whether a statement
is true. Def. Null Hypothesis: Hy : § € ©¢ C O, a statement that we try to reject based on sample;
H, : 0 € ©1 = ©/0 is Alternative Hypothesis.

[J Note: Cannot exchange Hy and H;, because when the evidence is ambiguity, we have to accept Hy,

regardless of what Hy is. So it is very important to pick the proper Hy’.

Thus Hypothesis Testing:
Hy:0€0p«— H;:0€ 0, (2.145)

« Rejection Region R & Acceptance Region RC: Judge whether to reject Hy from sample, Def. Rejection
Region:
R C Z: reject Hy ifXeRr (2.146)

Acceptance Region: accept Hy if X € R®

?So when being uncertain about which to put on Hy, think about which one we are more intended to assume when evidence is
ambiguous.

Examples:
— Clinical test, in which we should put ‘being ill” in Hy, and ‘all right’ in H;.

— Court trial, in which we should put ‘innocent’ in Hy, and ‘guity’ in H;.




58 CHAPTER 2. %it3Ewi3R o

vincent19

* Test Function: It’s hard and unparctical to really dividing regions in 2. Instead the regions are usually

described by some test function, basically it’s like some indicator function.

— Continuous Case:
1, XeR

p(X) =
0, XeR®
ie. R={X : o(X)=1}. Where R to be determined.
— Discrete Case: Randomized Test Function
1, XeR-0R
p(X)=<r, XecoRr
0, XeRC
Where R and r to be determined. R means the boundary of R
A Type I Error & Type II Error: Sample is random, possible to make a wrong judge.
— Type I Error (3¢ K): H is true but sample falls in R, thus Hy is rejected.

P(type I error) = P(X € R|Hg) = a(6)

— Type I Error (H{{4): Hy is wrong but sample falls in RC, thus Hy is accepted.

P(type Il error) = P(X ¢ R|Hy) = 5(6)

Judgement

Accept Hy Reject Hy
Truth | Hy Vv Type I Error
H; Type II Error vV

% 2.1: *Confusion Matrix’

H,

/ﬁa\

type Il error type | error

K 2.1: Tllustration of type I&II error

(2.147)

(2.148)

(2.149)

(2.150)

It’s impossible to make probability of Type I & II Error small simultaneously, how to pick a proper test

p(T)?
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0 Neyman-Pearson Principle: First control o < «, then take min .

How to determine cg? Depend on specific problem.”

A p-value: probability to get larger bias (or simply ‘more extreme data’) than observed g if Hy as ground

truth, and H; as alternative.

e.g. For reject region defined with statistics R = { X|T(X > ('}, p-value:
g ] g D

Pro,m (£) = PIT(X) > t(&o)|Ho, Hi] (2.151)

Remark: We believe that sample should reflect the property of model parameter, and p-value is that under
H,, the probability to get a worse result than Z. If the probability is small, then our assumption H( might
be invalid.
Rule: Reject Hy if p(Zp) < ap.
Note :
— p-value is different from « or type I error. p-value is generated before we make decision while «
arises after we decide how to make decisions. (But they do target the same result.)

— p-value is calculated after Hy «~» H; pair is given. Avoid abusing the concept of p-value.

» Power Function: After Hy : § € O is given, and we have determined the rejection region R, the probability

that sample falls in R, i.e. reject Hy by sampling, as a function of ground truth 6.

o P(type I error), feco a(), e
n(0) =P (£(0) € R|Ho ) = (e ) 0 _ )l 152
1 — P(type Il error), 6 € ©; 1-p5(0), 6€6;
Express as test function:
7(6) = E[p(X)]6] (2.153)

Power function is a measure of the goodness of test: (@) should be small under Hy, and be large under H;
(and grows very fast at the boundary of Hy and H1).
O General Steps of Hypothesis Testing:

1. Propose Hy & H;.
2. Select a proper « (to determine c).
3. Determine R (usually in the form of a statistic, e.g. R = {)Z : T()Z') > c}).

4. Sampling, get sample (as well as ¢(Z)), then

» compare with R and determine whether to reject/accept Hy, or

* calculate p-value and determine whether to reject/acceptH

%Tn most cases, take ag = 0.05.
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2.4.2 Hypothesis Testing of Common Distributions

For some common distribution populations, determine rejection region R under certain Hy with confidence
coefficient a.

Definition of necessary statistics see section section 2.3.3 ~ page 54.

1. Single normal population:

Condition Hy Hy Testing Statistic T’ Rejection Region R
L=po | 1F po . IT| > Ng
o? known, testpn | p <o | p> po T:\/H(XU_MO)NN(O,D T > N,
> po | < po T' < —Nq
p=po | 17 po ) T| > tp1,2
o? unknown, test i1 | < po | p> po T = \/ﬁ();—uo) ~tn_1 T>th 1,0
> po | g < po T'<—th1a
o2 = 0(2) o’ # 08 , T < Xi,l—% uT > x?%%
w known, test 02 | o2 < o2 | 02> o T= n:;“ ~ X2 T> Xi,a
o2 >0k | o?<o? 0 T <Xpi-a
o2 =03 | 0+ 0} , T<x2 ,, aUT>x2 4
p unknown, test 02 | 02 < 02 | 02 > o T= (n—gg)S ~Xpo1 T>x: 14
o2>0k | 0?2 <o? T < X?L—m—a

2. Double normal population:

02,032 unknown case see Welch Test in section 14.1.2 ~page 361.

3. None normal population:

4. More than two normal population: Analysis of Variance.

2.4.3 Likelihood Ratio Test

Idea: Totest Hy : 0 € Oy <— H; : 6 € ©1 known &, examine the likelihood function L(6; Z) and compare

Lgco, and Lycg to see the likelihood that Hj is true.

Def. Likelihood Ratio (LR):
sup L(6; %)
R 0cOg
AN =" — 2.154
() sup L(6; %) ( )
0cO

Reject Hy if A(Z) < Ag. Or equivalently: Reject Hy if —2In A(Z) > C(= —21nAy).
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Condition Hy Hy Testing Statistic T’ Rejection Region R
p1 — pi2 = o | p1— pa 7 o v [T| > Na
02,032 known, T = XY o ~ N(0,1) ’
p1 — p2 < po | f1 — p2 > po o} o3 T > Nq
test puy — po — + =
m
p1— p2 2> po | 1 — p2 < Ho T < —Ng
02,03 unknown | M1~ H2 = Ho | H1 — K2 # Ho - X-Y—u [mn T > tyn—2,a
but same, p1 — p2 < po | p1 — p2 > po S mtn T > tmin—2,a
_ ~ tm+n—2
test p1 — o 1 — p > po | 1 — pe < o T < —tmin-—2,
T < F, _a
01 = 03 ot # 03 r
/_,Ll,,lLan()Wn, 52 UT > Fym,e
9 %) s
o T <2 Fom
test —5 o} > o3 o} < o3 i T > Fom.a
2
o1 <05 O'%>O'% T<Fn,m,1—a
T<F, 1m11-2
0? = o2 0% # 03 nobmebiTs
f1, p2 unknown, 52 UT > Fy1m-1,9
of 2 2 2 _ 2 = sz~ Fn-tm-1
test ? ox) > 03 o] < 05 2 T > Fn—l,m—l,a
2
0? < o3 0?2 > 03 T < Fy1m-11-a
Condition Hy H, Testing Statistic T’ Rejection Region R
. n(X — d
X from B(1,p),testp | P=po | P # po T:M%N(O,l) [T| > Na
po(1 — po)
R n(X —Xo) 4
X from P(A\), test A | A= Ao | A # Ao TZM—HV(OJ) IT| > Ng
Vo :
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where Ag (or equivalently C' = —21n Ag) satisfies:
Eo,[0(X)] <, V0 €O (2.155)

LR and sufficient statistic: A(Z) can be expressed as A(Z) = A*(T'()), where T'(X) is sufficient statistic.

We usually denote A = log A
O LRT for one-sample t-test: For X1, Xo, ..., X,, iid. ~ N(u,0?), test

Hy:p=po<— Hi:pn# o when o unknown (2.156)
Can prove:
- 2
> (v — )
2 =1
== (2.157)
> (i — p1o)?
i=1
Denote T = \/ﬁ(ms—,uo), then LRT could be expressed in equivalent form
T2 -n/2
A= (1 + ) (2.158)
n—1

The Multivariate case see section 4.2.4 ~page 126, where T2 itself is the Hotelling’s 7 statistic.
U Limiting Distribution of LRT: Wilks’ Theorem
If dim© = k > dimspan{©g} = s'!, then under Hy : 6 € Oy:

oA = —2InA(Z) S v 2, (2.159)

2.4.4 Uniformly Most Powerful Test

Idea: Neyman-Pearson Principle: control «, find min 5. i.e. control «, find max 7(0)

Def. Uniformly Most Powerful Test (UMP) poypp with level of significance « satisfies
7TUMP(0) > 7T(9), Vo € @1 (2.160)

Neyman-Pearson Lemma: For X = (X1, Xs,..., X,,) i.id. from f(Z;0).

Test hypothesis Hy : 6 = 0y «— H; : 8 = 0. Def. test function ¢ as:

( (IL‘ 91)

1, C
e
o ;01

=<, - =C 2.161

z;v1

0, - <C
\ f(xa 90)

Then there exists C' and r such that

"Here *dimension’ refers to *degree of freedom’.
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f(@501)
f (5 00)

* This ¢ is UMP of level of significance o

* Elp(@)]00] = P(T = > O) +rP( —0)=a

Actually kind of 1-dimensional case of LRT.
Note: UMT exist for simple Hy, H1, otherwise may not exist.

—

UMP and sufficient statistics: Test function ¢ (X) given by equation 2.161 ~ page 62 is function of sufficient

— —

statistics T'(X), i.e. p(X) = o*(T(X)).
UMP and Exponential Family: For sample X = (X1, Xo,...,X,) from exponential family:

f(@;0) = C(0)h(Z) exp{Q(O)T(Z) } (2.162)
Test single hypothesis Hy : 0 = 0y <— H; : 0 = 01, (where 0y < 61). If

* B is inner point of ©

* (Q(#) monotone increase with

Then UMP exists, in the form of:

1, T(¥) >C
p(@)=qr, T(@=C (2.163)
0, T(@) <C

where C' and r satisfies E[p(Z)|6p] = a.
Note: or take Q(6) mono decreased, then in equation 2.163 ~ page 63, take opposite inequality operators.

[ General Steps of UMP:
1. Find a point §y € ©¢ and a point §; € ©;. (Note: one point)
2. Construct test function in the form of equation 2.161 ~page 62, use E[p(Z)|0g] = « to determine C' and r.
3. Get R and (Z).
4. If  does not depend on 01, then H; can be generalized to H; : 6 € ©;.
5. If g satisfies Egeo, (¢) < a, then Hy an be generalized to Hy : § € ©y.

(] Upgrade to one-sided test:
Using Neyman-Pearson we have only two-points test Hy : 6 = 0y «— H; : § = 6. With certain condition

we could upgrade two-points two one-sided test Hy : 8 < 0y <— H; : 0 > 0y by Karlin-Rubin Theorem.

1. Monotone Likelihood Ratio Condition : If V8 > 6 we have

L -
(q is monotone in sufficient stat7'(X)
L(0)

then we say that the MLR condition is satisfied.
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2. With MLR condition, we could upgrade two-points test to one-sided test Hy : 8 < 6y <— H; : 0 > 6.
We would have a UMP test of form

Rejection Region R = {X : T(X) > C}

Note: Upgrade to two-sided test Hy : 0 = 0y «— H; : 6 # 6 is not always possible. e.g. Hy : p =
o <— Hy @ # po for X S N (1, 02 known) does not have UMP test.

2.4.5 Duality of Hypothesis Testing and Interval Estimation

» Theorem: V6, € © there exists hypothesis testing Hy : § = 6y «— Hy : 6 # 6, of level o with rejection

region I?g,. Then
C(X)={0:X e RS} (2.164)

is a 1 — « confidence region for 0

« Theorem: C'(X) isa 1 — « confidence region for 6. Then V8, € C(X), the rejection region of hypothesis
testing Hy : 0 = 0y <— H; : 0 # 0y of level « satisfies

R} = {X:6) € C(X)} (2.165)
0 Idea:
Hy:0 =00« Hy : 0+ 6
0
P(RE(X)|Ho) = P(RE(X)|6p) =1 —a
7

Confidence Interval: 6y € RE(X)

Similar for Confidence Limit and One-Sided Testing.
> R. Code
The test function for one-way / two-way test. The function gives both interval estimation and hypothesis testing

results.

1 |# one-way
2 |[t.test(x, alternative = c("two.sided", "less", "greater"), mu = O,
conf.level = 0.95, ...)

3 |# two-way

4+ |t.test(x, y, alternative = c("two.sided", "less", "greater"), mu =
0, paired = FALSE, var.equal = FALSE, conf.level = 0.95, ...)
s |[t.test(df, ...)

where paired = TRUE for pairwise comparison requires |z| = |y|.
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2.4.6 Introduction to Non-Parametric Hypothesis Testing

Motivation: Usually distribution form unknown, cannot use parametric hypothesis testing.

Useful Method:

—

* Sign Test: Used for paired comparison X = (X1, Xo,...,X,), Y = (Y1, Yo,...,Y,).

Take Z; = Y;— X i.i.d.,denote E(Z) = p. Test Hy : u = 0 <— H; : pn # 0. Denote ny. = #(positive Z;)

1
and n_ = #(negative Z;), nop = n4+ + n_. Then ny ~ B(ng, 0), thus the testis Hy : § = 3 +—— Hj :
1
0 £ =
7 2
Then use Binomial Testing or large sample CLT Normal Testing on Hy.

Remark:

1 1
- AlsocantestH0:0§§<—>H1 :9>§

— Drawback: ignores magnitudes.

* Wilcoxon Signed Rank Sum Test: Improvement of Sign Test. Based on order statistics.

Order Statistics of Z;: Z(1) < Z(g) < ... < Z(y,), Where each Z ;) corresponds to some Z; as Z; = Z(g,),
then R; is the rank of Z;.!2

n

Ri=)_ (2.166)
=1
Def. R = (Ry, Ry, ..., Ry,) is Rank Statistics of (Z1, Z, ..., Zy,)
n 1 n
Ri=) lz,cz,+5 (14 Iz (2.167)
j=1 j=1
Def. Sum of Wilcoxon Signed Rank:

no
W =" Rillz, 50 (2.168)
=1

Distribution of W is complex. E and var of W under Hy:

1 1)(2 1
Ew+) = 0D gy = Molro £ Do £ 1) (2.169)
4 24
Usually consider large sample CLT, construct normal approximation:
Wt —E(W™*
L USRS (2.170)

var(W+)

Rejection Region: R = {|T'| > Na }

If some X;, X, . . . equal, then take same rank R = mean{R;, R;,...}.
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* Wilcoxon Two-Sample Rank Sum Test: Used for two independent sample comparison.

—

Assume X = (X1,..., Xp) idd. ~ f(z); Y = (Yi,...,Y,) iid. ~ f(z —0),test Hy: 0 = 0 +— H; :
0 +# 0.
Rank X; and Y; as:

W< Zy< .. < Dpm (2.171)

in which denote rank of Y; as R;, and def. Wilcoxon two-sample rank sum:

W = Z R; (2.172)
=1
E and var of W under Hy:
1 1
E(W) = ”(m+2”+) var(w) = " ;m ), (2.173)

Use large sample approximation, construct CLT:

W —EW
p- WZEW) o N(0,1) (2.174)
var(W)
> R. Code
1 |wilcox.test(x, y, alternative = c("two.sided", "less", "greater'

), mu = 0, paired = FALSE)

« Goodness-of-Fit Test: For X = (X1, X5, ..., X,,) i.i.d. from some certain population X. Test Hy : X ~

where F' is theoretical distribution, can be either parametric or non-parametric.

Idea: Define some quantity D = D(Xy,...,X,; F') to measure the difference between F' and sample.

And def. Goodness-of-fit when observed value of D (say dp) is given:
p(do) = P(D > do|Ho) (2.175)
Goodness-of-Fit Test: Reject Hy if p(dy) < .

Pearson y? Test: Usually used for discrete case.

Test Hy : P(X; = a;) = pi, i =1,2,...,r. Denote #(X; = a;) = v;, take D as:

r - )2
Kn:Kn(Xl,...,Xn;F):ZW (2.176)
i=1 v

Pearson Theorem: For K, defined as equation 2.176 ~page 66, then under Hy:
d
Kn — X72"7173 (2177)

Here s is number of unknown parameter, » — 1 — s is the degree of freedom.

Note:
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— a; must not depend on sample.

— For continuous case, construct division:

R — (—o0,a1,a9,...,a4,-1,00 = a,) (2.178)

and test Hy : P(X € I;) = p;

Criterion: Pick proper interval so that np; and v; both > 5.

» Contingency Table Independence & Homogeneity Test: Detailed knowledge and more complex appplica-
tion cases see section 7.2.4 ~ page 222 and section 8.2.1 ~ page 240

— Independence Test:

Test a two-parameter sample and to see whether these two parameters(features) are independent. De-

note Z = (X,Y’) are some ’level’ of sample, n;; is number of sample with level (3, j)

Contingency Table:
Y
1 J s | >
X

1 niy nyj nis | M1

? Uz g Nis ng

r Nyr1 Npj Nprs | Ny

> NAg ... NG ... Mg | N

Test Hy : X &Y are independent. i.e. Hy: P(X =1i,Y =j) = P(X =49)P(Y = j) = pi.p.j.

Construct ? test statistic:

K :ZZ [nij — () GHP _ ZZ"QJ —1 (2.179)
i=1 j=1 n n =1 j=1
d 2 2
Then under Hy, K,, — Xis—1—(r+s—2) = X{r—1)(s—1)

Reject Hy if p(ko) = P(Ky, > ko) < «

— Homogeneity Test:

Test R groups of sample with category rank, to see whether these groups has similar rank distribution.
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Catego
gory Category 1 ... Categoryj ... CategoryC | >
Group
Group 1 nii e nij e nic ni.
Group ) ;1 ce Nij . n;c n;.
GroupR nR1 NnRj NRrc nRgR.
Z n.gq e n.j e n.c n

Denote P(Category j|Group i) = p;;. Test Hy : p;j = pj, V1 <i < R.
Construct ? test statistic:

R C

D = ZZ i :n()n(

i=1 j=1

.5 \12 R C 2
g(_n)] . Zz%fl (2.180)

d
Then under Hy, D — X%(C,l),(cq) = X%Rfl)(Cfl)

> R. Code

Contingency table test example:

1 |table_df <- matrix(c(10,20,15,25), 2, 2)
> |chisq.test(table_df)

3 |[fisher.test (table df)

* Test of Normality: normality is a good & useful assumption.
ForY = (Y1,Ya,...,Y,),
Test Hy : exists & o2 such that Y; i.i.d. ~ N(p,0?).

— Kolmogorov-Smirnov Test: Assume X form population CDF F(z), test Hy : F(z) = Fy(a)(where

can take Fp = ® or some other known CDF).

use I, (z) (as defined in equation 2.122 ~ page 52) as approx. to F'(x), test

Do= Y |Fu(z)— Fox) (2.181)

—oo<r<+00

Reject Hy if D,, > ¢

or use goodness-of-fit: denote observed value of D,, as d,,. Reject Hy if

p(dy) = P(Dy, > dy|Ho) < o (2.182)

— Shapiro-Wilk Test:
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Test Hy : exists & o2 such that X; i.i.d. ~ N(u,02).
Xy — p
Denote Y(z-) = %, m; = ]E(Y(z))
Under Hy, (X (i)s m;) falls close to straight line. Test Statistic: Correlation
- 2
> i1 (X — X)(m ))
R% = ( = - — = corr (X, m;) (2.183)
i (X — 5o ST~ ©
Reject Hy if R? < ¢
Shapiro-Wilk correction:
/2] 2
<Z¢:1 ai(Xny1-i) — X(i)))
W = (2.184)

> 1(X() X)?

> R Code
1 |shapiro.test (x)

[0 Summary: Useful Non-Parameter Hypothesis Testing.
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x* Test

Binomial Test
One Population Sampleq One-Sample K-S Test
Wilcoxon Sign Test

Runs Test

Mann-Whitney Test

( K-S Test
Independent Sample

Wald-Wolfowitz Test

Moses Test of Extreme Reactions

Non-Parameter Two Population Sample

Hypothesis Testing Sign Test

McNemar Test

Relative Sample
Wilcoxon Rank Sum Test

Marginal Homogeneity Test

Median Test
)
Independent Sample ¢ K-W One-Way ANOVA Test

Jonckheere-Terpstra Test

| Multi-Population Sample

Friedman Rank Sum Test

Relative Sample< Kendall’s Coefficient of Concordance Test

Cochran Q Test




Chapter. IIl  ZME[EVIASHTERSD

Instructor: Zaiying Zhou

(] Steps in Regression Analysis
1. Statement of the problem,;
2. Selection of potentially relevant variables;
3. Data collection,;
4. Exploratory Data Analysis (EDA )
5. Model specification;
6. Choice of fitting method;
7. Model fitting;
8. Model validation and criticism;
9. Using the chosen model(s) for the solution of the posed problem;
10. Explain the result.

R. Code for EDA

1 |libaray ('GGally ')
> |head (df)

3 |ggpairs (df)

4 [ str(df)

s | summary (df)

0 Used Packages in R.

i [library('ggplot2"')
2 [libaray ('GGally ')
3 [library('car')

4 |library ('moments')

s [library('lmtest ')

6 [library('nortest')

71
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7 | library ('MASS')

s [library('tseries')

10 | source('package.r')

Section 3.1 Regression Model

In regression model, we will observe pairs of variables, called cases’(FE A< ). A sampleis (X1;Y1),. .., (Xn; Vo),
where X; can be multivariate X; = X; = (Xi1, Xig, ..., Xip).

If X is continuous numeric variable, use Regression Model(s), else if X is discrete factor variable, use
Factor Model(s).
> R. Code

Example data import:

1 |df <- read.table('dataset/testdata.txt', header=FALSE, sep=',', col.

names = c('y','x1',"'x2"))

3.1.1 Linear Regression Model

Regression Model focuses on how Y changes with continuous variables X € R. As a basic situation, we
use Linear Regression, i.e. Y ~ X in linear relation.
[J Sample Geometry Notation (Full Version)

For most general case, in sample matrix notation:

Y=XB+e=Y,=XpBj+¢,Yi=1,2,....q (3.1)

in Einstein Summation Convention:

Y;;j = Xij’ﬁj’j + €ij 3.2)

Why we need ¢ as "random error term’?

* It represents the intrinsic random property of the model.

* Based on ¢, we can take r.v. into our statistic model.
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where
Yyir Y12 ... Yig Yij
Y1 Y22 ... Y2q Y2j
y o= [ ) yi=| (3.30)
nxq : : o
_ynl Yn2 ... ynq_ _yn]_
1 rir T12 ... Tip $/1 1
1 o1 X922 ... T2 {E/ Tl
x = I wi=|" (3.3b)
nx(p+1) Do P :
1 Zpi Tpo .. Ty x, ip |
[Bor Boz ... Bog) _5 7
50
P Pz .- Pig 5
31
B =B B . Bag| = [B1,Be... 5] gi=1" (3:30)
(p+1)xq ) . .
Bjp
[Bp1 Bp2 -+ Bl T
€11 €12 ... €1g €15
€21 €22 ... €&2¢ €25
niq | S {51’52’ o ’5‘1} & : (3.3d)
_6n1 En2 ... 6nq_ _5nj_
with Guass-Markov Assumption:
Zero-Mean: E(¢;|X;) =0
Homogeneity of Variance: var(e;) = o2 (3.4)
Independent: ¢; i.i.d. ~ ¢
and Normality Error Assumption:
Normality: ¢; i.i.d. ~ N(0,0?) (3.5)

Under matrix notation, model and assumptions equation 3.4 ~page 73 (equation 3.5 ~page 73) can be ex-

pressed in condensed notation:

Vi = XBj+ej~ Na(XBj,07L), j=1,2,...,q (3.6)
A Note: In this section we only focus on g = 1, i.e.
nxl  nx(p+l) (p+1)x1 X1

Regression Problem in Bayesian Statistics Statement see section 13.4.9 ~page 357.
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3.1.2 Factor Analysis Model

Regression Model focuses on continuous variables X € R while factor model focus on discrete variable.

More specifically, the ‘value’ of X is just a label, not necessarily a ‘numeric value’.

Here only introduce one-way factor analysis,(single factor analysis) i.e. Y with only one factor with r levels:

fac =1,2,...,r. Re-denote Y;; = the observation outcome of the 4™ item labelled the i level.

Model:

Yij=p+7t+eyi=1,...,r,7=1,...,n4

.
w.r.t. Z 7,=0
i=1

(3.8)

(3.9)

where 1 is the average effect of all » factor levels, 7; is the level effect of the i™ factor level, and ¢ i.i.d.

~ N(0,0?) is noise error.

In matrix notation:

r T
Y = _y11 cee Ying Y21 oo Y2no
1 1 0
1 1 0
(1, 1, 0 0 |
1 0 1 1o, 0 1y, 0
1., , 0 0 1,,_,
1nr *lnr lnr lnr_
1 -1 -1
1 -1 -1
§ i T
T:_/L T T2 ... Tr—1
T
52_811 .o. Elp; €21 ... E2py }

For more factor model e.g. two-way factor analysis with k denoting item and ¢, 7 denoting factor:
Yiik =+ a; + B + &5

cannot be simply expressed in matrix notation — use index notation.

Assumption: Normal, Equal variance, independent
* One-way: Yj); iid. ~ N(pu+7,0%), Vi

* Two-way: Yy ;; iid. ~ N(u+ a; + f3;,0%), Vi, j

(3.10a)

(3.10b)

(3.10¢)

(3.10d)

(3.11)
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Section 3.2 Monovariate Linear Regression Model

First focus on the simpliest monovariate case XZ = X;. Monovariate Linear Model' with Gauss-Markov

assumption & Normal Error assumption:

Y; = Bo+ SiXi + €, & iid. ~ N(0,0?) (3.12)

What does Linear Regression do? Try to estimate
* (o (intercept) ;

* b1 (slope) ;
+ o2 (variance of error).

(Thus Linear Regression is also a Statistics Inference process: deduce properties of model from data)

3.2.1 The Ordinary Least Square Estimation
Aim: use (x;,7;) to estimate 3o, 1,02, The idea is to define a ’loss function’ to reflect the *distance’ from

sample point to estimation point.

Estimate Principle: 2

* Ordinary Least Squares:

n
(Bo, 1) = argmin Y " (y — By — fr;)? (3.13)
50751 i=1
* MLE or MoM Estimation.
And get Bl, 30 as well as UA2(see equation 3.18 ~page 76:
n
2@ =n)(yi— )
By == m
> (2 — 2)?
A = (3.15)
fo =y — b1z
2oL S B
n—p— 1 r 7 7

Def. Residuals: distance from sample point to estimate point, to reflect how the sample points fit the model.

e; = y; — U; = observed value of ¢; (3.16)

"Here in linear regression, we consider X; only as real number, without randomness. So here Y; can be considered as an r.v. with X;
as parameter, i.e. Y;|x;—z;
Detailed Definition and Derivation see section 2.2.5 ~ page 49 or section 3.3 ~page 81.

. Y X
3 A memory trick: use ——— = rxy ——— to get formular of Y ~ X:

Vv Y ex

Bl = TXY\/\/g = Z(g(xx)_(:)Q 2 (3.14)
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Note: under least square estimation, we have*

dei=0 > wie;=0 (3.17)

Then use ¢; to estimate o2 (because it is £ that are i.i.d., not Y;), where (n — p — 1) is Degree of Freedom

(df or dof)°
1

o =— Z e (use MLE or MoM)
n

. 1 , 1 , ’ (3.18)
0% = pa—— Z & =" Z e; (use OLS, unbiased)
Degree of Freedom of a Quadric Form:
* Intuitively: the number of independent variable;
* Rigorously: for quadric SS = 2’ Ax:
dofss = rank(A) (3.19)

Which comes from Cochran’s Theorem. A proof can be found here: https://vincent19.github.io/

/texts/Cochran/

> R. Code

1 |1mfit <- 1Im(formula,df)
2 | summary (lmfit , cor=TRUE)

3 |ggecoef (Imfit)

Imfit includes parameters Imfit$coefficient and Imfit$residuals

Example 1m () output:

1 Call:

2 Im(formula =y ~ x, data = df)

3

4 Residuals:

5 Min 10 Median 30Q Max

6 -16.1368 -6.1968 -0.5969 6.7607 23.4731

;

8 Coefficients:

9 Estimate Std. Error t value Pr(>|t])

10 (Intercept) 156.3466 5.5123 28.36 <2e-16 sk
1 X -1.1900 0.0902 -13.19 <2e-16 sk

*“Intuitively, they each means *E(¢) = 0’ and "X || ¢’.
3Generally, MLE and OLSE are different.
Comment from R.A Fisher: 3 €7 should be divided by *number of 7 that contribute to variance’. Here (n — p — 1) corresponds to
*degree of freedom’ = (n—2), p = 1 corresponds to ‘one’ variable (see section 2.2.5 ~ page 49, equation 2.121 ~ page 51), and correponds

to the two equations of e;, equation 3.17 ~page 76
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i ——
13 Signif. codes: 0 '"xxx' 0.001 'x*x' 0.01 'x' O0.05 ".'" 0.1 '," 1
14

15 Residual standard error: 8.173 on 58 degrees of freedom

16 Multiple R-squared: 0.7501, Adjusted R-squared: 0.7458

17 F-statistic: 174.1 on 1 and 58 DF, p-value: < 2.2e-16

3.2.2 Statistical Inference to 3y, 31, 0

[J Sampling Distribution of i, BD
Consider Bl, BO as statistics of sample, then we can examine the sampling distribution of Bl, BO. Their

randomness comes from

Y = Bo+ /1 Xi +e (3.20)

(The following part treats /31, 3y as r.v., and note that X; are not r.v.. And for convenience and conciseness,
n

denote Sxx = Z(X" — X)Q)
i=1

. "X, - X

B =P+ ; e (3.21)
- - 1(Xi—X)X> ‘

Bo=Bo+ z; (n g (3.22)

Denote corresponding variance as og and 02 , using equation 1.125 ~page 33 to get:
1 0

2 72
2 _ O 2 _ 21 X
%5 = Sex 05 =0 (n+SXX

) (3.23)

And under normal error assumption, distribution of Bl, Bo are

2

B~ N(B1,0%) = N(Br, o) (3.24)
XX

3 2 2,1 X2

Bo ~ N(bo,05 ) = N(fo, o (5+@)) (3.25)

Based on sampling distribution of /3’1, 30, we can conduct statistical inference, including CI and HT.®

Note: In linear regression model, we usually focus more on 3;. And note that when 0 is not within the fitting

range, 3y is not so important.’

Detail see section 2.4 ~page 57, estimating/testing B1, Bo usually corresponds to *estimate 1, with o unknown’.

"Two reason:

* The etimation error of Y from Bl increases with X, — X;

* 1 == 0is important: decides whether linear model can be used.
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0 Sampling Distribution of e; Consider e; as r.v. satisfies

e =Y~ Y=Y~ fo— i X; (3.26)
and get the expression of e;
n _
, 1 (X - X)?
Gi=ei— Y (n g ) e (3.27)
k=1
1 (X - X)?
;=0 02 =0° (1 S H) (3.28)
: n Sxx
Under normal assumption:
1 (X;—X)?
e; ~ N (0,02 <1 S M)) (3.29)
n Sxx
1 1 (X;—X)?
Further we can get var(62) = E( S €e?), wheree? ~ 0% [1— — — (X = X)7 X2
n—2 n Sxx
1 - 1 (X;—X)?
~2\ 2 A

More definition of refined residuals see section 3.4.3 ~page 88 in page 3.4.3.
] Why we choose OLS to get regression coefficients?

Gauss-Markov Theorem: the OLS estimator has the lowest sampling variance within the class of linear

unbiased estimators, i.e. OLS is the Best Linear Unbiased Estimator(BLUE).?

3.2.3 Prediction to Y},

For anew X, at which we wish to predict the corresponding Y}, (based on other known points {(X;, Y;)}7 ),

denote the estimator of mean as jiy:

fir, = BrXn + Bo = B1Xp + Bo + Z <1 + (Xi = )g)(Xh — X)> € (3.31)
i1 \" XX

Thus we can get’

X 1 (X —X)?
E(:u’h) = Bth + BO O-l%h = <77, + (}:S'X)()> O'2 (332)
Under Normal assumption:
. 1 X, — X)?
Kh ~ N(/Bth + Bo, <’I’L + (}AZS,XX)) 0'2) (333)

Base on distribution we can give CI and HT.

[0 Interval: We can either consider ...

8This Theorem does not require normal error assumption.

’So 0% (fin,) increases with X;, — X . Intuitively it make sense, because (X, Y") must falls on regression line.
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. thonf = f[ip: a function of (estimated) parameter to get confidence interval: We can just use the above

distribution of /iy,

. A 1 X, — X)?
Vet = juy, ~ N(B1Xp + Bos (n + (I;LSXX)> o?) (3.34)

> R. Code

| |predict (lmfit ,newdata = 40),

2 interval="confidence",level=0.95)

. Y}f red — fn, 4 €: a function of (estimated) parameter and an extra random term to get prediction interval.

In this case we have an extra randomness. Def. Prediction Error: Y}, itself is an Y of the linear model, i.e.

Y, = BO + BlX n + €n, we can define Prediction Error:

dp =Yy — fin (3.35)
with B
X L (X =X)| 52 o
E(dh) =0 O'zh = U(M“(Yh — ,U’h) = |:1 + E + S)(X:| o~ > Uﬂh (336)
thus
. 1 (X — X)?
Yoot = fiy, + &g, ~ N(B1X5 + fo, (1 + =+ m) o?) (3.37)
n SXX
> R. Code
i |predict(lmfit ,newdata = ..., interval="confidence",level=0.95)
> |predict (1mfit ,newdata = ..., interval="prediction",level=0.95)

Comment: in prediction error, we considered more random component, thus the CI is also larger.

(] Simultaneous Confidence Band (SCB)

Confidence Band is not the CI at each point, but really a band for the entire regression line.'°
Aim: Find lower and upper function L(z) and U (x) such that
PL(x) < (Bo+ fiz) <U(z),Vx e ;] =1—« (3.38)
and get Confidence Band:
{(z,y)|L(2) <y < U()Vz € I} (3:39)
Where (L(x),U(z)) can be derived as
(L(ZL‘), U(:L’)) = ﬂx + SﬂwWQ’nfg,lfa Yz € Ix (340)

'"Why they are different? We require the confidence band have a simultaneous converage probability. For the same band (L(x), U(z)),
P(the whole line) < P(each point), so Confidence Band is wider than [ JCIs to hold the same 1 — c.

Also, we will see that for linear model, the boundary of SCB forms hyperbola, which make sense considering its asymptotic line.
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Where W correponds to W distribution: W,,, , = /2F,

)

Small sample case: Bonferroni correction.

> R. Code

i1 |library (ggplot2)
> |ggplot (df ,aes(x,y))+geom_point ()+geom_smooth(method='1lm', formula=y~x
)

3.2.4 Analysis of Variance: Monovariate

ANalysis Of VAriance (ANOVA): One-sample ¢ test ~~ Two sample ¢ test ~» More-sample: ANOVA
[l Key Idea Of ANOVA: Test whether the mean of some groups are the same, i.e. ;11 = s = ... = p,

In linear regression model, modified as testing 51 == 0. Conduction: Take Partition of Total Sum of Square
To Examine Variation. Because Y; are not i.i.d. (different mean value X (), so has different parts of variation

from Regression Model/Error Term.
Measure of Variation: Sum of Square (SS) & Mean Sum of Square (MS).
MS: Divide each SS by corresponding do f. Definition of dof see equation 3.19 ~page 76.

SS
MS = — 341
* SST: Total Sum of Squares
n
SST=> (Y;i-Y)* dofssr=n-—1 (3.42)
i=1
+ SSRegression: Variation due to Regression Model (which is explained by regression line);!!
n —
SSR=) (V;-Y)>  dofssr =1 (3.43)
i=1
» SSError: Variation attribtes to € (which is reflected by residuals).
n
SSE=> (Yi-Yi)  dofssg=mn—2 (3.44)
i=1
A IMPORTANT: In some books
* SSRegression — SSExplained or SSModel;
» SSError — SSResidual.
And Cause Confusion! In this summary we take the former.
Idea: take partition of SST. i.e.
Vi—Y =Y, —V)+ (Y -Y)=¢ (3.45)

MSSR = A2, (X — X)%, sodofr = 1
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And we can prove that
n
(3.46)

n n
SST= 3 (¥ = 7)2 = 3 (i = 7)2+ 3 (¥ - ¥1)? = SSR + SSE
=1 i=1

i=1

That is: we partition SST into two parts, so that we can examine them seperately.

[0 ANOVA Table

Source dof SS MS F-Statistic

SSRegression | 1 Y7 (V;—Y)? SSR/dofr MSR/MSE
SSError | n—2 " (Vi —Y;)? SSE/dofg
SSTotal n—1 Y ,(Yi—-Y)* SST/dofr

> R. Code
i |anova (lmfit)
Properties:
E(MSE) =062  E(MSR) =02 + 2Sxx

Section 3.3 Multivariate Linear Regression Model

As a more general case of X; = (X1, Xjo,

tion 3.7 ~page 73:
Y = XB+¢, e~ Ny(0,0%])

3.3.1 The Ordinary Least Estimation

To conduct OLS
B =argmin(Y — XB8)T(Y — Xp)
/Be]RP—O—l

Here we introduce two approaches:
* Analytical: Take matrix differciation (See section 4.1.2 ~page 118 equation 4.41 ~page 120)

0= 8(Y_XB)T(Y_XB) — g(yTy_YTXB_ﬁTXTy_’_BTXTXﬁ)
ap ap
XTy - X7y + (XTX + XxxT)p = —2XT(Y — Xp)

Thus we get OLS:
B=(X'X)"'X'Y

(3.47)

Xip), Multivariate Linear Model is expressed as in equa-

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)
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* Geometric/Algebraical: Use hyper-projection.

B = argmind(Y, X ) (3.53)
ﬁeRP+1

ie. B is the (hyper-)projection of Y onto X (within Euclidean Space), naturally we have

(XB)T(Y -XB)=0=3=(X'X)"'XY (3.54)

] Matrix Notation of OLS Estimator:
B=(X'X)"'X'Y (3.55)
3.3.2 Statistical Inference to 3, o2

Properties & Extrapolation

» Sampling Distribution of j: (Here consider normal case Y ~ N (X 3,021I,,), and use equation 4.66 ~ page 123)

B=(X'"X)"'X'Y ~ N,(B,0%(X'X)7h) (3.56)

Comment: cov(f3;, B;) are generally not 0, = f3;, 5; dependent.

* Predicted Response & Hat Matrix H:

V=X3=XX'X)"'X'Y = HY = PxY (3.57)

where Hat Matrix/Influence matrix/Projection matrix H = Px = X (X'X)~1X’, with properties
— Symmertric: HT = H;
— Idempotence: H? = H
— Rank: tk(H) = tr(H) = rk(X)

— H and self-influene factor h;;: Note the linearity of YonY

5 oY
oY (3.58)
The diagonal elements of H is
i
hi = 220 = X;(X'X) X! (3.59)
0y,
Comment on h;;: var(e;) = 02(1 — hy;), for h;; — 1, i.e. the regression line always pass y;, thus it’s
‘influential’.
* Residual:

e=Y -Y=(I-H)Y ~ N, (0,06*I - H)) (3.60)

where I — H is the complementary projection of X
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Covariance Matrix of Residual:

1—hy1 —h1s e _hln

byt L—hay ... —hon
cov(e) =o*(I—H)=o| o b (3.61)
S U

« Estimator and Distribution of o2:

First use equation 4.67 ~page 123 to get 2

E(SSE) = E(ce) = E(Y'(I - H)Y) = (XB)'(I — H)XB +tr((I — H)o*I,) = 0*(n —p—1) (3.63)

dof of Residual e (use definition equation 3.19 ~page 76):

dofe:dof(I_H)y :rank(I—H) =n—p-—1 (3.64)

Thus the unbiased estimator of o2 is

62 = MSE = = (3.65)
Distribution (under normal assumption):

n—p—1)62
% ~ X1 (3.66)

g
» Gauss-Markov Theorem: OLS Estimator of 3 is the BLUE Estimator.

More hypethesis testing to 3 see section 4.2.4 ~page 126.

3.3.3 Prediction to Y},

For a new X, at which we wish to predict the corresponding Y}, (based on other known point (X, Y;)),

denote the estimator of mean as jiy,:

fin = X056 =X, (X' X)Xy (3.67)
thus we get
E(im) = X358 of, =" (1+ X4(X'X) 71 X)) (3.68)
under normal assumption:
fin ~ N(X'8,0%(1+ X}(X'X) 71 Xp)) (3.69)

12 Also we need the property of idmpotnet matrix

Xi=0orl=tr(H)=rank(H) =Y X\ =#(X=1) (3.62)
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3.3.4 Analysis of Variance: Multivariate

Sampling Notation see equation 3.3 ~ page 73, still consider (p + 1) -dim (1,,, X;) v.s. 1-dim Y, and 8 =
(BOa Bla BQ? ) Bp)

* SST:
SST= (Y -Y1,)' (Y -Y1,) dofssr=n—1 (3.70)

¢ SSR:
SSR= (Y —V1,)(Y - Y1,)  dofssg =p (3.71)

Denoted in hat matrix H and 7 in equation 4.17 ~page 116

SSR = Y'(H — %j)Y (3.72)
» SSE:
SSE= (Y -Y)(Y-Y) dofssg=n—p—1 (3.73)
Denoted in residual e and hat matrix H:
SSE=¢€e=Y'(I - H)Y (3.74)

More knowledge about multivariate ANOVA see section 3.4.5 ~page 95.

[J ANOVA Table

Source dof SS MS F-Statistic
SSRegression P S (Vi —Y)? SSR/dofr MSR/MSE

SSError n—-p—1 Y (Vi—Y))? SSEdofg

SSTotal n—1 S (Y =Y)? SST/dofr

> R. Code

| |anova (1lmfit)

Section 3.4 Diagnostics

To apply OLS, we need the basic Gauss - Markov Assumption equation 3.4 ~page 73; or we further need
better properties of the model, e.g. take Normal Assumption.
Assumptions:
Zero-Mean: E(¢;|X;) =0

Homogeneity of Variance: var(e;) = o
(3.75)

Independent: ¢; i.i.d. ~ ¢

Normal: £ ~ N(0, %)




Tuorui Peng

CHAPTER 3. %93 547805

v

Investigate

curvature and

A

[ Collect Data }4

!

Preliminary checks

on data quality

!

Diagnostics for

\ 4

Yes

relationships and

strong interactions

!

Remedies

needed?

Determine several
potentially useful
subsets of explana-
tory variables;
include known

essential variables

interaction effects

more fully

!

Study residuals and

other diagnostics

|

Remedies

Select tenta-

tive model

|

Validity

No checks?

{ Final regres- J

sion model

3.1: Diagnostics and Remedies for Regression Model

needed? Yes



86 CHAPTER 3. %93 547805 vincent19

Or sum up as
Y ~ N, (XB,0%I,) (3.76)
Thus we need to conduct Diagnostics and Remedies to
» examine whether these assumptions are satisfies;
* perform correction to regression method.
Preliminary Diagnostics:

> R. Code

1 |lmfit <- 1m(y~x,lmfit)
2 |par (mfrow = c(2, 2))
3 |[plot (Imfit)

4 |par (mfrow = c(1, 1))

3.4.1 Useful Diagnostics Plots

* BoxPlot: to examine the similarity of shape of distribution.
Notation:
1. min point above (25% quartile — 1.5 IQR);
2. 25% quantile;
3. median;
4. 75% quantile;
5. max point below (75% quartile 4 1.5 IQR).

* Histogram Plots: Frequency distribution (can deal with many-peak)

* Quartile-Quartile Plots: Examine the similarity between distribution.
For two CDF ¢ = F(z) and ¢ = G(x)(where ¢ for quartile), with z = F~1(q), x = G~!(g). And Plot
F~q)-G™(q).
Usually test normality, take G = ®

« Partial Regression Plot: Test non-linearity/heterogeneous-variance.

For each X; variable:

— Use other X, to predict Y, get residual ey|X (Ad)s
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— Use other X ;) to predict X;, get residual ex, [ X1

Plot (ey | X(ns))-(ex;[X(ni)) as Added Variable Plot (AV Plot). Used for testing non-linearity/heterogeneous-

variance.

> R. Code

1 |boxplot (df$x)

3 |hist (df$x)

s |hist (df$x,freq=FALSE)
6 |lines(density (df$x))

8 |stem(df$x)

10 |gqnorm (df$x)
i1 |ggqline (df$x,col="red")

13 |library (car)

14 |avPlots (1mfit)

3.4.2 Diagnostics to X Distribution

Considering the dependence of Y; on X, to get a more reliable ,5’1, we cannot just focus on the (marginal)

distribution of Y;, we would also need a better ’distribution’ of X

* Plots: BoxPlot/QQPIot
* 4 statistics(parameters);'3

— Mean: Location;

X = 1 X; (3.77)
n
i=1
— Standard Deviation: Variability;
1 < .
2 _ w2
S? = — Z(Xl X) (3.78)
=1
— Skewness: Lack of Symmertry;
n —
w2 (X = X)?
A~ Mpg3 i=1 379
N= s n T\ 32 (3.79)
© (1w-n)
1=

BSee section 2.1.1 ~page 38
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Adjusted Skewness (MMSE):
nn—1)
Vil =1 (3.80)
n—2

% g1 > 0: Right skewness, longer right tail;

% g1 < 0: Left skewness, longer left tail.
(mean — median)

Fisher-Pearson coefficient of skewness:
o
— Kurtosis: Heavy/Light Tailed.
1 & -
na_,__HET
Go = m;" 3= ln* 5 — 3 (3.81)
" <711 > (Xi— X)2>
i=1

g2 = 0 = similar to normal.
% go > 0: Leptokurtic, heavy tail, slender;

% §o < 0: Platykurtic, light tail, broad.
Note: In expression of §; and g2, we already divide the variance. So Skewness and Kurtosis only

reflect the difference from normal, but not related to variance.

Best tool to determine Kurtosis: QQ-Plot.

> R. Code

summary (df $x)

Other moments use package moments

* Bias: Inspect the design methodology
— Selection Bias: Not completely random sampling;

— Information Bias: Difference between *designed’ and *get’, e.g. no response;
— Confounding: Exist another important variable, while the model actually focuses on a less important

variable, or even reverse the causality.

3.4.3 Diagnostics to Residual

[l Residual Reflects the properties of ¢
* Linearity : use Residual Plot/AV Plot to Reflect the linearity and variance assumption.

> R. Code

Imfit <- 1m(y~x,df)
scatter (df$x,Ilmfit$residuals)

abline (h=0)
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s |library (car)

s |avPlots (1mfit)

+ The Assumption of Equal Variances / Homoscedasticity (57 /5 Z 14):
— AV Plot, e.g. test the R? of (ey | X(r4))-(ex,| X(n) relation.

— Bartlett’s test:

Idea: divide the sample into groups g, and get each MSE
g

1
MSE, = o D (Vg = Yy)? (3.82)
=1

and take statistic

MSE, | — 3 (n)1n 29~ L visE
g Z(”g)nN g

g=1 —Nyg

1 G 1 1
14— =
3G (El g N—G)

~ X&-1 (3.83)

to conduct test.

Note: sensitive to normal assumption, not robust. Used when normal assumption is satisfied.

— Levene’s test: Divide the sample into G groups. Denote mean of residual within each group as €,

and in each group compute

n
- = 1
dig = leig — €4 = dy = o Zdig (3.84)
J=1
Then conduct ANOVA to d,.
If G = 2: 2-sample t-test,
di — d it — )%+ S (dga — do)?
7 h-d 4, 2 Y (din — di)* + > (diz — da) (3.85)

1 1 n—2
S\ T s
— Brown-Forsythe’s Test (Modified Levene’s test): For skewed sample, take the mean as median, more

robust.

* Breusch-Pagan Test:

Assume variance of ; dependent on X; as m™ polynomial:

m
ol =ao+ Y X/ (3.86)
k=1

and test

Hy:oap=0Vk=1,2,....,m+— H; (3.87)

Method: First conduct OLS to get regression line [1 and residuals e; and SSE, and conduct regression
of e? over X; to get another regression line [ and corresponding SSR*.

Then statistic
SSR*/2 4

5= (SSEjn)z  Xm

(3.88)
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> R. Code
Example for G = 2:

1 |group <-factor(rep(c(1,2),length.out=length(df$x),
2 each=(ceiling (length(df$x)/2))))

4 |bartlett.test (Imfit$residuals~group, group)
6 |library (car)
7 |leveneTest (lmfit$residuals~group,group,center=mean)

s [leveneTest (lmfit$residuals~group,group,center=median)

0 |library (lmtest)
i1 |bptest (Imfit)

* The Assumption of Normality :
In most case we use S-W Test(n < 2000) and K-S Test(n > 2000):

— QQ-plot of ordered residuals.

* Shapiro-Wilk Test (Most Powerful)'*: To test Hy : 302, s.t.c ~ N, (0,02I,), denote

m; = E(Eg)) (3.89)

then under Hy, E@iy ~ My — linear, thus test correlation

(X0 (e — @) (mi —m))’

R?= = - - —— = corr(egy, m;) (3.90)
S (e — €2 3oy (mi — m)? .
— Kolmogorov-Smirnov Test:
Dy =Y |Fule) - 2(e)| (3.91)
— Cramér-von Mises Test:
T= n/ (Fn(e) — ®(e))* d®(e) (3.92)
— Anderson-Darling Test:
& 1
A% —n / (Fn(e) — ®(e))? ——————— dd(e) (3.93)
oo O(e)(1 - D(e))
— Jarque-Bera Test , using skewness g1 and kurtosis go of €
n,. 1.5, 4
IB = (91 + 593) = X3 (3.94)

> R. Code

“Detail of S-W Test and K-S Test see Test of Normality in section 2.4.6 ~page 65
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i |gqnorm(lmfit$residuals)

2 {gqline (lmfit$residuals)

4+ |qqp <- qqnorm(lmfit$residuals)
s | cor(qqp$x,qqp$y)

7 |shapiro.test(lmfit$residuals)

9 |ks.test(jitter (lmfit$residuals), pnorm,mean(lmfit$residuals), sd

(Imfit$residuals))

n |library (nortest)

2 |cvm.test (Imfit$residuals)

4 |ad.test (Imfit$residuals)

16 | library (tseries)

17 | jarque .bera.test (Imfit$residuals)

e The Assumption of Independence :

— Durbin-Watson Test: )
n
> j—alej —€j-1)
S e

d= (3.95)

d € (1.5,2.5) is fine.

— Ljung-Box Test:

n ~2

Q= n(n+2) Pi (3.96)

> R. Code

| |dwtest (Imfit)

3.4.4 Diagnostics to Influentials

An intuitive explanation to extreme values:

e Outliers: Extreme case for Y;

* High Leverage: Extreme case for X;
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¢ Influentials: Cases that influence the regression line.
U Influentials = Outliers N High Leverage
In section 3.3 ~page 81, we got the S as f = (X' X)"1X'Y = HY and got Y as
V=X8=XX'X)"'X'Y = HY (3.97)
: — / -1 / 8Y
where hat matrix H = X(X'X)7 X' = v
Also we got statistical inference to 3,02, e
B=(X'X)'X'Y ~ N(B,02(X' X)) (3.98)
e=Y —Y = —H)Y ~N(0,0%(I — H)) (3.99)
! Y'(I-H)Y
52 —msE— — ¢ _ YU ) (3.100)
n—p—1 n—p—1
n—p—1)o2
L 5 = Xp—p-1 (3.101)
g
The diagonal elements of I are self-sensitivity h;;
hi = XI(X' X)X, (3.102)
[J Some refined residuals to help conduct Diagnostics:
+ Standardized Residual:
€; €;
Esdi = — = —F——= 3.103
sdi O'ei 0'\/1—7}),” ( )
* (Internally) Studentized Residual: replace o with s = &
€; €;
T eVl —hy JMSEVI—h,; P (3.104)
+ Deleted Residual:'?
A~ e’L
dz:)/z_}/i(/\z) - 1— hy (3.115)
50 Proof:
Lemma: (A+ B)™' = A" — mA*IBA*I, where rk(B) = 1.
B(/\i) = (X(//\i)X(/\i))_lxé/\i)Y(/\i) (3.105)
Using the above lemma: (here for aesthetic purpose, treat X; as row vector)
(X(roXnp) " =(X'X - X{X;)™! (3.106)
(v’ -1 1 / —1 /. ’ -1
=(X'X)" + = R 0] (X' X)) XIXi(X'X) (3.107)
=(X'X) 7 —— (X' X)X X (X X) (3.108)
Xy Yoy =X'Y — XY, (3.109)

then calaulate B(M):
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where Yi( ni) 1s predicted Y value at X; obtained from the regression of dataset with the i case (X;,Y;)

removed:

Biniy = Xy Xn0) " XpYonoy  Yieni) = XiBini (3.116)

* (Externally) Studentized Residual: To avoid self-influence, take deleted residual in equation 3.104 ~ page 92

d; € €;

82(di) - (AT(M)\/l — hii - \/MSE(/\Z')\/l - hii

Relation between MSE and MSE ;)

t; = ~ by (3.117)

2
(n—p—1)MSE = (n — p — 2)MSE ;) + ﬁ (3.118)

which also gives the relation between ¢; and r;:

1/2 1/2
n—p—2 n—p-—1
ti=ri| — sSr=t—s 3.119
i TZ(TL—p—l—T’?) T z(n_p_2+t12> ( )

* Diagnostics to Qutlier: use external studentized residual for ¢-test with Bonferroni adjustment. Declare the

ith case an outlier if:

|ti| > toz/2n,nfp72 (3.120)
» Diagnostics to Leverage: use hat matrix H/self-sensitivity h;;.

n _ 1
Zhii:tr(H):p—i—l:h:% (3.121)
=1

Biriy =(Xian X(a0) ™ X{ai) Yiniy
(X' X)X/ X (X' X)™H

=|(X'X)"" + - } (X'Y - XVi)
’ -1y’ v. ’ —1 v/ ’ 1y’ y. ’ —1y/y/.
A+ X'X) ' XixXxX'x)'xy (X'X) XY (X' X)X X, (X' X)L XY,
1-— hii 1-— hii
3+ (X'X)7'X)y,  (X'X)T'X{Yi(l— hi) (X’X)*lxgyih__
o 1-— h” 1-— hu 1-— hu ’“
» (X'X)T'X] o
=5+ %(YV% -Y)
A - e
=B = By = (X' X) T XiT—— (3.110)
Then
Yi — Yinsy =Yi — Vi + Vi — Yigns) (.111)
=e; + Xi(B — B (3.112)
e + Xi(X'X) X (3.113)
S (3.114)

O
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Declare the 7™ case a leverage if:

. 1
his > wh = kPE (3.122)
n
where usually take x = 2 or 3.
Diagnostics to Influential: Studentized DIFference caused to FITted values (DIFFITS)
DIFFIT:
. . B
DIFFIT; = Y; — Yjp) = € : _h (3.123)
DIFFITS:
DIFFIT; hii
DIFFITS; = ——— = #; " (3.124)
s(Y;) 1 — hi;
Declare the i'" case an influential if:
DIFFITS; > 1 small/medium data
3.125)
1 (
DIFFITS; > 2 pt2 large data
n

Diagnostics to Influential: Cook’s Distance, by quantifying the ‘influence’ to B .

Using equation 3.56 ~ page 82(equation 3.66 ~ page 83) we could construct the following Cook’s Distance'®

PO 2
b HX(B—ﬂ(/\l))H _ e? hi; 1—hiiD‘NF ) ) (3.126)
' (p+1)52 (p+1)52 (1 — hy;)? P ‘
Comment: )
(o hii 1 hii 2
D; = t = » 3.127
‘ (p—l—l)c}Q |:(1—hn')2:| p—l—ll—h“‘ o ( )
where 11 "h correponds to hige leverage, and r? correponds to outliers, multiply to get influentials.
p — Nig
Declare the i case an influential if
4
D; > — (3.128)
n

Or conduct F'-test using the distribution of D;, with @ ~ 20%.

Diagnostics to Influential: Studentized DiFference in BETA estimates (DFBETAS). Use equation 3.56 ~ page 82,

define
var(Br) = o*(X'X) ! = o (3.129)

And studentize difference in 3 with i case removed: 3}, — Bk( Ad)

B = Broni

V/MSE 1y,

DFBETAS (i) = k=1,2,...,p (3.130)

Sproof uses equation 3.110 ~page 93.
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Declare the ih case an influential if

DFBETAS; > 1 small/medium data

2
DFBETAS; > % large data

> R. Code

(3.131)

| |rstudent (Imfit)
> |library(car)
3 |outlierTest (Imfit)

s |hatvalues (1mfit)

7 |cooks.distance (1lmfit)

g |plot (Imfit,which=4)

10 |dfbetas (1lmfit)

Leverage and Mahalanobis Distance:

Mahalanobis Distance between X and Y as defined in equation 4.29 ~page 118

A (@) = /(@ — 7S H(@ — i)

And we can proof djs of a case item X;. = (1, X;1, Xja, ..., X;p) is!’

Br(X2) = (0= 1)(his — )

1
here S = S . Note that L.H.S. > 0, thus it’s also an evidence that h;; > —
n

(p+1)x(p+1)
3.4.5 Extra Sum Of Square
Def. Extra SS: the part of SSE explained by a new X5 when adding to model ¥ ~ X;:

SSR(X3|X1) = SSE(X1) — SSE(X1, Xa) = SSR(X1, X2) — SSR(X1)

where SS(-) represents the SS when the model contains variable -.'8

(The following part use model (Y, X1, X2) as example.)

7Proof hint: use lemma

A"t'BAT!

A4 By toato A BA-
(4+B) 1+ tr(B-1A)’

rank(B) =1

and note that X, 1 = 1,,
'8SSE(1) = SST, where 1 correponds to intercept.

(3.132)

(3.134)

(3.135)

(3.133)
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We could use extra SS to examine the proper regression model: examine the F value and Pr (>F) in the

output.

> R. Code

1| Im(y~x1+x2+x1:x2) %>% anova

Note: Three types of SS

Term Type I SS"? Type 11 SS Type 111 SS
X1 SSR(X7) SSR(X1|X>) SSR(X1| X2, X1X2)
X5 SSR(X3|X1) SSR(X3|X1) SSR(X2| X1, X1X3)

X1X9 SSR(X1X2|X1,X2) Assume no interaction term  SSR(X; Xo| X1, X5)

Lang.Func R.anova python. SPSS,SAS,R.1m

To get Type Il and III anova, use Anova(lmfit,type='II1"') in 'car' package.

Hierarchical Principle: the interaction term X; Xo should always come in after marginal term X; and X5.

> R. Code

1 |libaray('car')
> |Anova(lmfit,type='I1")

3 [Anova(lmfit,type='II1")

3.4.6 Hypotheses Testing to Slope

Main focus: whether the linear relation exist:

H()Z,Bl :,32:...261,:0<—>H1:Hﬁi#o,izl,Q,...,p (3136)
As for generalcase Hy: C B — t =0, use General Linear Test F'.
gx(p+1) (p+1)x1

¢ ANOVA F'-Test:

We can examine

F= 1\1\1—21; ~ Fyn—p-1 (3.137)
* General Linear Test (GLT)
First we introduce the examine models:
— Full model: Include all variable/parameters to be examined, with p variables.
Y=X8+¢ (3.138)

And define SSEf with dofr = n — p — 1 under Full Model.
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— Reduced model: Apply the Null Hypothesis to Full Model, with p variables
Vi=XB+e (3.139)
And define SSER with dofg = n — p — 1 under Reduced Model.
Then conduct test to the difference between Full model and Reduced model through SSEr and SSER.

— One dimensional case: Hy : 51 =0

Examine
(SSER — SSEF)/(dOfR — dOfF)
F = ~ Fy 3.140
SSEg/dofr b2 (3.140)
> R. Code
1 |fullmodel <- 1mfit
> |[nullmodel <- 1m(y ~ 1,df)
3 |anova(nullmodel ,fullmodel)
— General case: Test Hy: C [B— t =0, construct F statistics as
gx(p+1) (p+1)x1
ch—t) [c(x'x)tc] (B -t
po G- OX0 N Ch o) .
qo
« r and Different R?:
— Pearson’s r:
n — A —
S (Y- V(¥ — V)
ry v =cov(Y,Y) = L (3.142)
b n _
\/ Y (Yi—Y)?
i=1
— Coefficient of Multiple Determination R?:
SSR SSE
2
— —1- == 3.143
SST SST ( )
— Adjusted R?:
MSE n—1 SSE
R=1-—=1- 3.144
a MST n—p—1SST ( )
Relation between r and R?: Under Simple Linear Model, we have
R? =142 (3.145)
Relation between R? and F-Statistic:
R> n—p-1
F= T o1 " Froin—p—1 (3.146)
Hypothesis testing for r:
r
t= m\/n — 2~ 1ty p1 (3.147)

> R. Code
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1 |cor.text (df$x,df$y)

* Coefficient of Partial Determination Rf,,d AX, and Coefficient of Multiple Determination R?: CMD re-
flects the interpretability of the model, to examine the interpretability of each variable, use coef. partial

determination

R2 =R2 _ SSR(Xk‘Xl,...,Xk_l,Xk+17...,Xp) _ SSR(Xk|/\Xk)
VXX s Xt X1 Xp 7 T XA X SSE(X1, ..., Xp—1, Xpp1s---, Xp) SSE(AX})
(3.148)

Note: Coef. Partial determination can also be used for X;, X;: Rg(, X,IAXD X,
i g R

Sometimes we use 0 = RY x| = By

* Coefficient of Partial Correlation 7;.: Measures the strength of linear relation, - sign depend on posi./nega.

Me = £1/713 (3.149)

correction.

> R. Code

1 |library('heplots')
2 |etasq(1lmfit)

3.4.7 Diagnostics to Multi-colinearity

* Venn Diagram for Multi-Linear Regression: Used to show the interpretability of variables.

Y

X1 Xo

Explanation of each region:

— 1/3: Variation in Y uniquely attributes to Xo/X7;

— 2: Variation in Y that cannot be explained by regression to X, X5, corresponds to ¢;
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— 5: Cross term of X1, X5, cannot verify the orientation, corresponds to Multi-colinearity.

In the presence of multi-colinearity, i.e. X is column singular (575 large), the regression parameter
1

or Ss

B=(X'X)"'X'y (3.150)

Issue of multi-collinearity:

» Statistically:‘better’ prediction, worse interpretability;

* Numerically: Calculation of (X’ X)~! becomes unstable/ill-posed/NAN.

[1 Use Variance Inflation Factor (VIF) to detect multi-collinearity.

First construct R,%, k =1,2,...p: Regress X}, against other p — 1 variable X;s and get corresponding R2,

and
VIF, =(1 — R2)~! (3.151)
1
VIF ==Y " VIF; (3.152)
k=1
If ||VIF; || > 10 or VIF > 1, then we identify an excessive multi-colinearity.?
> R. Code

i |library('car')

2 |vif (lmfit)

3.4.8 Diagnostics to Model Variable Selection

In Multi-variate regression, proper explanatory variables form a subset of all available variables.
Aim: Avoid over-fitting, get a simple explanatory model.

Comment: If we consider the model with all py,.x variables as full, unbiased model, then model selection is

a kind of Bias-Variance Trade-Off.
[0 Model Validation: k£-Fold Cross Validation(CV):

1. Separate the dataset size n into k parts;

2. pick the i™ part as test set v;, and the other & — 1 part as train set y;(to conduct regression, etc); then

conduct prediction of model y,; to part y; ane get MSE;;

3. Take average of MSE; as the measure of validity.

1. . . .
2Why VIF;, = Vi is called ‘variance inflation factor’? We can prove that
k

- o2 1 o2
var(Br) = m . R—i = m - VIFy (3.153)
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[0 Evaluation Criteria

Useful model validation approach: To check a model with p — 1 variable (this part p for 1+# variable)

* Traditional way: Test r, R2, R?L, p-value, etc.

* Mallow’s C): For a model with p variable:

YP = X,(X,X,) ' XY = H)Y

Denote:

E(Y?) = H,E(Y) = Hyp  var(Y?) = Hyo’ I, H), = o*

Recall the MSE expansion of bias-variance trade-off in equation 2.51 ~ page 44?!

n n

Y B =)’ ) =) EIY)) = wl + Y var(YF)

i=1 =1 =1

==E(SSE(p)) - (n — 2p)o”

Sum Squared Prediction Error (SSPE):

_ Xk E[(g’ —pm)?] E(Sili(p)) (- 2p)

o

And construct Mallow’s C,,: Estimation of I',,

E(SSE(p))

6-2

C,=T,= —(n—2p)

(3.154)

(3.155)

(3.162)

(3.163)

(3.164)

(3.165)

where SSE(p) = Y’(I — H,)Y . When the model is unbiased, then we should have E(SSE(p))/62 — n—p.

C)p-p plot could be used to pick a proper p:

— C, = p: Model unbiased, then choose model with smaller Cl;

U Derivtion:

— Bias part: (Here use equation 4.67 ~page 123 in 3" line; use equation 3.63 ~page 83 in 4™ line.)
STIEY - ua)]P =4 (H, — 1) (H, — D
i=1

=u(I — Hp)p'
=E(Y'(I — H,)Y) — tr[(I — Hp)o”]
=E(SSE(p)) — (n — p)o”
— Variance part:
Zvar(fﬁ-p) =tr(var(Y")) = o’tr(H,) = po’

i=1

Then R
i EIYY — 1)) E(SSE(p))

o2 o2

(3.156)

(3.157)
(3.158)
(3.159)

(3.160)

(3.161)
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— (), > p: Significant biased, miss some important predictors;

— (), < p: Overfitting.

* Akaike Information Criterion (AIC): Euivalent to Mallow’s C), for gaussion regression model.

AIC(p) = —2log(L) + 2p (3.166)

where L is the maximum likelihood, for linear regression case

AIC(p) = nlog (ssi(m> +2p (3.167)

Select the model that minimizes AIC(p).

* Bayesian Information Criterion (BIC)/Schwarz’s Bayesian Criterion (SBC):

BIC(p) = —2log(L) + plogn (3.168)

where L is the maximum likelihood, for linear regression case

SSE
BIC(p) = nlog <(m> + plogn (3.169)
n
Select the model that minimizes BIC(p).

* PRESS Creterion (Predictive Residual Error Sum of Squares): A kind of within-model cross validation

n
PRESS(p) = > (Vi — Yipp)® (3.170)
i=1
where
Ai(/\i) =(1, Xi1, . .. 7Xip)B(/\i) (3.171)
Binsy =(X{niyX(ni) ™ X Yina) (3.172)

where B( ni) as in EqaEstimatorWithWedgeX, is the estimated 3 with (X;, Y;) removed from X 22

Select the model that minimizes PRESS(p).

> R. Code
1 |library('leaps')
2 |predictor <- df[,c(C'..."," . ..",...)]
3 |[response <- df[,...]
4+ |leapSet <- leaps(x=predictor, y=response, nbest = ...)

22 A useful thm.: Deleted Residual
€

di :=Y; —f/i(m') =15

(3.173)
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s |# method=c('Cp','adjr2','r2"')
6 | leapSet$which[which.min(leapSet$Cp),]

nbest for NUMBER_OF BEST_MODELS

Section 3.5 Remedies

3.5.1 Variable Transformation

The goal of Transformation:
 Stablize Variance;

* Improve Normality;
 Simplify the Model.

(] Variance Stabilizing Transformations:

With E(Y|X) = ux, variance of Y might be expressed by a function of expected value, i.e. var(Y|X) :=

h(px ), which we are trying to stablize.

Take transformation Y — f(Y") such that variance is stablized: (with delta method approximation here)

var(f(Y)) = (f'(ux))*h(ux) = const

which gives the stablizing transform:
cdy

AN

f(u)

Examples:

h(p) =p® = f(p) =Inp
h(p) =p® = f(u) = p'™"

O Box-Cox Transformation:

Take
Yr—1

Examples:

A=1=Y"~Y

A=05=Y"~ VY
A=0=Y"~hY
A=-1=Y*~1)Y

And conduct regression to model

Y*=po+ 51X +¢

(3.174)

(3.175)
(3.176)

(3.177)

(3.178)
(3.179)
(3.180)
(3.181)

(3.182)
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Likelihood Function
1 1 « oY*
L(B,o%N) = —— Y Y= Bo— X)) | J 3.183
(/870 ) ) (271'0'2)”/2 exp ( 20_2 ;( K3 /80 /81 ) ) ( 8Y ) ( )
where the Jacobi Matrix denoted in Geometric Mean GM(Y) = [[}", Yil/ "
oY* L _
=TIy = eom(y)mA-1 3.184
J(55) 131 ; (¥) (3.184)
MLE Estiamtor:
B = (X'X) ' X'V (3.185)
1
62 = —SSE* (3.186)
n
SSE* =) (V" —Y*)? (3.187)
i=1
And when 3, 0 take MLE estimator, L(3,02; \) can be regarded a function of \:
2 n o
InL(B,0%A) =1\ = —3 IHW + const (3.188)
For simplification, denote Z = Y*/.J/™ and get
LN = —nlnagz + const (3.189)
where
YrA-1 1
=Y A#£0
77 = 1Y, (3.190)
noo1
nY; I] v, A=0
k=1
. YA -1
Plot [(A)-A to determine a proper A and transform Y™* = T
« Selected A should be closed to Aarg max 1, at least within CI*?
1
{/\|l()\) > l(/\argmaxl) - 5)(%,1—04} (3.191)

+ Should pick a A which is Interpretable. e.g. If A = 1 is within range [0.94, 1.08], then take A = 1 (does

not transform).

> R. Code

1 |library (MASS)

3 |bctrans$x [which.max (bctrans$y)]

bctrans <- boxcox(y~x,df,lambda = seq(-1.5, 1.5, length =

15))

Note: we can transform on X or Y or simultaneously to get better regression model.

BHere CI can be derived using Wilk’s Theorem
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3.5.2 Weighted Least Squares Regression

To deal with heterogeneous variance, use Weighted Least Squares (WLS) instead of OLS: Minimizing

el — Y wie? (3.192)
i=1 i=1
And e.g. take weight for each case as
1
w; = — (3.193)
0;
Solution:
Bw = (X'WX) ' X'WY (3.194)
> R. Code

1 [ Wlnfit <- 1m(y~x,weights=WEIGHT _VECTOR,data=df)

3.5.3 Remedies for Model Variable Selection & More Regression Model

O Variable Selection Methods

Several Algorithm to search for best variable set:

* Exhaustive Search and Test (usually through Mallow’s C),, see equation 3.165 ~page 100): Used for p <~
30

» Greedy Search: Get a locally optimal solution.

— Forward Selection: Start with p = 0, add one variable each times and conduct ¢/ F'/p-value test until

a presupposed certain limit.

— Backward Elimination: Start with pp,y, eliminate one variable each times and conduct ¢/ F'/p-value

test until a presupposed certain limit.

— Stepwise Regression: Alternate forward selection & backward elimination until no add/elimination.

[J Regression with Penalty Term / Regularization

Recall: OLS regression model: Minimize SSE**
B = argmin||Y — X33 (3.195)

Idea: Add a penalty term in SSE, such that SSE increases with # of variables/value of variables. More about
this ‘loss + penalty’ form optimization see section 9.1 ~page 243 and section 9.4.5 ~page 258.
* LASSO (Least Absolute Shrinkage and Selection Operator)

Penalty term: A||3||1, where A is a proper penalty parameter.

B = argmin(||Y — XB||5 + A|18],) (3.196)

**Here expressed in £, norm, definition see sec.4.1.2, Norm
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or equivlantly expressed as 2

B = argmin||Y — X5H§7 with |81 < s

(3.197)

where s is a parameter correponding to A. Select a proper value of A(or equivlantly s) for expected model:

Some B, would be exactly 0.

» Ridge Regression/Tikhonov Regularization:

Penalty term: \||3||3, where ) is penalty parameter.
B = argmin(|[Y — X 5|3 + Al|8]13)

or equivlantly expressed as

B =argmin|Y — XB|I3, s.t. |8]3 < s

(3.198)

(3.199)

Select a proper value of \ (or equivlantly s) for expected model. Generally Ridge regression cannot conduct

variable selection, but usually used to avoid non-invertible X’ X, or used to retain important but collinear

variable.

Solution of Ridge regression:°

AR — (XX + AD)TIXY
A Bayesian point of view for Ridge regreession see section 13.4.9 ~ page 357
* Mixed Model: Elastic Net
B = argmin(|[Y — X 5|3 + Ml|Blh + A2l 8]13)
or equivalent form:

B —argmin [Y — X5
B

A1 A9 9
s.t. Bl + Bl < s
)\1 )\QH Hl )\1 )\QH HZ—
icki h meter (s, A = A2
icking proper er-parameter (s, A =
p g proper hyper-p N+

ZConstrained optimization theory intro see section 5.1.4 ~page 147.
2Why Ridge regression can also fix the problem of colinearity, i.e. non-full rank X X'

Assume the SVD decomposition of X: X = UXV’, then

X'X+ M =VSU'USV' + M\

o+ A 0 0
0 o 4N ... 0
0 0 . 0'12,+1+)\

then for A > 0, we can get a positive-definite matrix X' X + \J

(3.202)

(3.203)

(3.204)

(3.205)

(3.200)

(3.201)
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> R. Code

library ('MASS ")

Rfit <- 1lm.ridge(y~x,lambda=seq(0,0.1,0.001) ,data=df)

summary (Rfit)
whichLambda <- which.min(Rfit$GCV)
coef (fits) [whichLambda, ]

library('lars')

Lfit <- lars(x,y,type='lasso')
summary (Lfit)

whichCp <- which.min(Lfit$Cp)
Lfit$Cp [whichCpl]
Lfit$beta[whichCp,]

[J Non-parametric Regression Model

Add smooth/penalty function. e.g. loess (Locally Regression), lowess (Locally Weighted ScatterPlot

Smoother), Regression Tree.

[J Other Regression Model

Standardization (with an extra const 1/y/n — 1)to Y and X.

1 Y,-Y 1 X —X;

Y=

! vn—1 sy vn—1 sx;

And the regreeesion model for standardized data:

n
Y =0+ X585 +e;
j=1

with
B = L 15%;
J

Sy

Note: set the const as v/n — 1 so that

> R. Code

* *
X5 = £;

vn—1 sy

+ Standardized Regression Model For regression model Y; = ,6’0+Z§:1 XijBj+ei,i=1,2,...,n,conduct

(3.206)

(3.207)

(3.208)

(3.209)

1 |scaledf <- data.frame(scale(df))
2 |scalelmfit <- 1m(~,scaledf)

3 |summary (scalelmfit)
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* Polynomial Regression Model

> R. Code

1 |polfit <- 1m(y~x+I(x72),df)

2 |[polfit <- Im(y~polym(xl,x2,degree=),df)

¢ Interaction Model

Example:
Y =Bo+ 1 X1+ B2 Xo + B3 X1 X2 + ¢ (3.210)
Re-write as
Y =00 + (b1 + BsX2) X1 + B2 X2+ € (3.211)
Y =5y + f1Xo + (B2 + B3 X1)Xo + € (3.212)

test the regression coefficient dependence on another variable.

» Kernel Regression: see section 9.4.5 ~page 258.

Section 3.6 Factor Analysis of Variance

Here are some basic introduction to factor model. For more knowledge see Chapter 8 ~ page 232 and Chap-

ter 14 ~page 360

3.6.1 Single Factor Model

Single factor, or one-way analysis of variance focuses on continuous Y ~ categorical X (numeric-factor).
Regression goal is the mean response of each category 7;: whether & how much they are different.
Basic assumptions: Normal within each categories + Equal variance + Independent

Model: See equation 3.10 ~page 74 expression for single factor model
Yij=p+7i+ey, eij~N(0,0°) (3.213)

where 7; for group effect, u; = p + 7 for factor effect. Originally only p; are estimatable.

> R. Code

1m() in R. uses cell means model, returns p; = p + 75 for each categories.

1 |facfit <- 1lm(y~x,df) # where x should be as.factor() type

O Statistical Inference to Individual i, 7;
Note: Initially we have 7 + 2 variable (y, 7/_;, o) = estimator not unique. So we use a constraint to cancel

the extra degree of freedom.

Z ¢t =0 (3.214)
=1
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usually we take ¢; = d1; (cell mean model) / ¢; = 1 (factor effect model) / ¢; = n;.

* Cell means model solution for ¢; = d;1, i.e. 71 = 0. In this case we directly express ;

'*< |

Z

=u+T7

 Factor effect solution for ¢; = 1, i.e. Zle 7; = 0 (used most often, and is used in the following parts in

this chapter).
X 1 L 1 roong )/1-,‘]
Srd BB Drs
=1 =1 j=1
722 :Yz - /:"

nr
17]

o o 1¢ i
=Y =Y =—)> Yij—[i
n; 4

J=1

[l One-Way ANOVA
ANOVA table in the form of r = p + 1 multivariate ANOVA in page 84

Source dof SS MS F-Statistic
SSRegression | r — 1 S (Vi —Y)? SSR/dofr  MSR/MSE

SSError | np—r S0 Y, (Vi;—Y;)?  SSE/dofg

SSTotal np—1 37 >0 (Ve —Y)? SST/dofr

Use MSE as estimator of o2

NG

n—r
T =1 j=1

1]1

Also F-statistics for Hy : 71 = 79 =

nT—r
1=

.=7=0

SSR/(r — 1)

F=MSR/MSE = ———~
SR/MS SSE/(np — 1)

L1 Statistical Inference to Group Difference

We usually focus on ‘difference’ between factor effects, general form

6=> &m, Y &=0
i=1 i=1

where ¢ with Y, & = 0 is called a contrast. Assume there are m estimator ¢y, k = 1,2, ...

~ Fr_1 np—r, under Hy

(3.215)

(3.216)

(3.217)

(3.218)

(3.219)

(3.220)

(3.221)
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®1 1 S22 oo S| T
o T
b = 2| _ ¢ 7 = S &2 Sor | |72 (3.222)
mx1 . mxrTX1 : : : : :
_(bm_ _fml Em2 .- gmr_ _Tr_
. r r
Sampling distribution of ¢y, = > &kiTi, with > & = 0:
i=1 i=1
s T T 52
o = Z EpiTi ~ N(Z 1iYi, 02 Z ni) (3.223)
=1 =1 =1
Or use transform of multivariate normal in equation 4.66 ~page 123
¢ ~ N (é1,0%¢¢) (3.224)
with which we could coustruct corresponding interval. Here are some useful methods.
* Bonferroni’s Confidence Region for ¢ , using result in equation 4.110 ~page 128
mx1
m
R(¢) =X (3.225)
k=1
* Scheffé’s Confidence Region for ¢ :
1x1
T
R(9) =Y &Yi£61/(r ~ DFr 1 npra (3.226)
i=1
* Tukey’s HSD Confidence Region for ¢ , under conditionn; = ... = n, = n: focus on estimating 7; — 7;
1x1
— Def.: studentized range distribution: for Z1, ..., Z, i.i.d. ~ N(0,1), mW? ~ x2 , then
max Z; — min Z;
_ ZW i Gnm (3.227)
Then confidence interval for ¢ = 7; — 7;
— 1
R(¢p)=Y, - Y; £ G —ro (3.228)
General case: ¢ = >\, &
T 6’ T
R(¢) = ; N NG ; & (3.229)

Comment: Scheff¢ is more conservative, i.e. shorter. If confidence interval does not include 0, we can say

they are significantly different. More about theory behind these confidence region see section 14.1.3 ~page 361-

Multiple Comparison

> R. Code
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i [library('agricolae"')

2 [facaov <- aov(y~0+x,df)

4+ |LSD.test(facaov,trt="'design',group=FALSE, console=TRUE)

6 |scheffe.test(facaov,trt='design',group=FALSE, console=TRUE)

s | TukeyHSD (facaov,conf.level=0.95)

use plot () to view interval estimation

3.6.2 Double Factor Model

Double factor, or two-way analysis of variance, categories ;;:

Yijk = p+ o + Bj + eiji (3.230)
OLS estimator with > % | a; = 0, Z?‘:l B = 0:

a b Nij

u:albzzz?f (3.231)

i=1 j=1 k=1
b Nij
1 '
Gi=p ) Y (3.232)
. _ n’L]
Jj=1k=1
1 Ly,
A i1k ~
By 623
i=1 k=1

MSE estimator of o2:

. 1 a b M _ 1 abnij2 ab}*/iz'
e P BN D S DR MM ) B el

i=1 j=1 k=1 i=1 j=1 k=1 i=1 j=1

More about theory of Factor model or Dealing with complicted cases see Chapter 8 ~page 232 and Chap-
ter 14 ~ page 360.
Section 3.7 Generalized Linear Model
Recall: Linear model with normal assumption can be expressed as :
Yi ~ N(pi,0}) = N(x;B, 07) (3.235)

Question: How to generalize the simple linear model?

¢ Generalize the distribution
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* Generalize the dependent mode

(] Distribution Generalize: Scaled Exponential Family For different range and feature of Y we can use differ-
ent distribution for regression. We usually use Exponential Family distribution f (y; g , gi_;) asinequation 2.18 ~page 40,

with some constraint on subfunctions for better distribution properties, written as linear scaled exponential family:

;o {y’9 — b(9)

0.8 =exp { 00 o)) 3.236)

where @ is the canonical parameter for location and gz_g for scale(usually we take a(¢) o< ¢).
Properties of f(y; 0, ¢):

» Expectation

p=EY)= /yf(y) dy = / <“(¢)ae + d@) f(y)dy = b'(6) (3.237)

¢ Variance

o? =var(Y) = / vy f(y)dy — E(Y)E(Y)T (3.238)

2 2
_ / (a;’jw + (0 (0)y + ¥ (9)) — B ()Y (0)” + a(9) jeﬁ(fﬁ) f(y) dy — E(V)E(Y)"

(3.239)
d2b(6 -
= = b’ 3.240
» Examples: Normal, Binomial, Poisson
1 1
— Normal =——exp|—=(y—p)ISy - >withE: 2T
s = oo (== = -
yp—sin yy 1 5
1
Compare with equation 3.236 ~page 111, § = u: b(0) = §’UI'U’ a(¢) = o2
* B(Y)=0b(0)=p
x var(Y) = a(p)t"(0) = o2
— Binomial P(y) = (Z)wy(l —m)" Y ~ B(n,m):
T n
f(y) = exp <y ln(1 )+ nin(l —7) +In (y)) (3.242)
-
. . 1
Comparelwnh equation 3.236 ~page 111, § = ln(1 — W) ST = T3 e b(f) = —nn(l —m) =
—nln l +69,a(q§) =1
1
* E(Y)=0(0) =nln [T e0 ="
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— Poisson P(y) = —e™* ~ P(\):
fly) =exp(yln A — X —1Iny!) (3.243)

Compare with equation 3.236~page 111,80 =In\ < XA =e?: v(0) = X =€, a(¢) = 1
* E(Y)=0(0) =\
* var(Y) = a(p)b”(0) = A

[l Dependent Mode Generalize: Link Function

Note that Y; ~ N(u;,02) = N(x.3, c?) contains the dependency of y; on ;3 thus we can further generalize
the regression model as p; = 2’3, here y; stands for E(Y") as in equation 3.237 ~ page 111. However for different
distributions, u = E(Y) have specific range, e.g. i € [0, n] for B(n, p), while 2’3 € R, thus use a link functiong:
I,, — I,/ to adjust the range:

2B = g(pi) < p = g~ («'B) (3.244)

1

Note: Link function should be monodrome & differentiable such that g—* exists. And here 2’3 term still

exist (because it’s still generalized linear model), thus we denote 1 := 2/(3 as a linear predictor/classifier

n:=2'p (3.245)

Regression Model:
i = g(pi) & i =g~ ' (n) (3.246)
O Useful Generalized Linear Model:

Important Question: how to choose proper generalization ‘pair’ : Distribution & Link Function pair?

Idea: Use the expectation transform:

Distribution: u = E(Y) = ¥/(6) (3.247)
Link Function: u = g~ !(2'B) (3.248)

Thus
g @B =V (0) = n=2a'8=g(t'©) (3.249)

For model simplification, we can choose g( - ), b( - ) such that
g () =1d(-) < g () =V(") (3.250)

such condition is called Canonical Link of generalized linear model, such choise of link function makes '3

the canonical parameter in model.

O=n=a'8=g(u) g () =g (n) =g («'B) = p=E(Y) (3.251)

Mg = 15 (3.252)
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1
* Logistic Model: B(n, ), g(z) = logit(z) = In . f . <g 1 (y) = logistic(y) = T
nmi = pi =g~ (m;) (3.253)
* Poisson Model: P(\), g(-) =1In(-) < g~ 1(-) =exp(-)
Xi=pi =g ' (m) (3.254)

O Solution of Generalized Linear Model

Using the distribution of Y; dependent on z 3, we can use MLE maximizing to solve 3. Algorithm for such
maximizing task is called Iterative Re-weighted Least Squares, more specifically when using Newton-Raphson

Method, this method is called Fisher’s Scoring Method. Detail see section 5.4.3 ~page 170.




Chapter. IV Z x4t ko

Instructor: Dong Li & Tianying Wang

Section 4.1 Multivariate Data

In this section, we consider a Multivariate Statistic Model. Sample comes from p dimension multivariate
population f(z1,x2,...,2p).

Notation : In this section, we still denote random variable in upper case and observed value in lower case,
specially express random vector in bold font. But in this section we usually omit the vector symbol ~*. e.g. random

vector with n variable is denoted as X = (X.1, X.2, ..., X.p); sample of size n from the multivariate population
T 1

isan x p matrix {z;; }, each sample item (a row in sample matrix) is denoted as = or x; .

4.1.1 Matrix Representation

* Random Variable Representation
» Sample Representation
* Statistics Representation

» Sample Statistics Properties
(1 Random Variable Representation:

* Random Vector: For a p x 1 random vector X = (X1, Xo, ..., Xp)T, denote (Marginal) expectation and

variance, and covariance, correlation coefficient between X;, X; as follows:?

i = E(X;) (4.1)
oii = 07 = E(X; — )’ (4.2)
oij = E[(Xi — pa) (X — p1y)] (4.3)
Uz’j Uij
o= = 4.4
S ARNCENC Rt @4
"Here sample item (or sample case) z; = [Ti1, Ti2, .. -y xiP]T is a column vector.

2 An intuition to avoid confusion of ¢..: two subscripts means quadratic.

114
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and we have covariance matrix (as defined in section 1.4.3 ~page 26, equation 1.77 ~page 27)

_011 012 ... le_
S =B(X - p)(X -] = |70 (4.5)
O1p Op2 oo Opp)
and Standard Deviation Matrix
VY2 = diag{\/7:;} (4.6)

Based on X = (X1, Xo, ..., Xp,), consider the linear combination:Y = /X = 1 X1 + 2 X2 + ... X,

E(y) =u var(Y) = d%e (4.7)

and Z; = 3°%_, ¢;;X; (ie. Z = CX):

pz =E(Z)=Cux Sz =CExCT (4.8)
and Correlation Matrix® _ -
P11 P12 - Plp

0= 0.21 P‘22 . p'zp _ y-l/2yy-1/2 4.11)
|Plp Pp2 -+ Ppp)

* Random Matrix: Definition and basic properties of r.v. see section 1.3 ~page 22. Now extend the definition

to matrix X = {X;;}.

X1 X2 X1p
X={x;}=|"" "7 . .2’” (4.12)
Xin Xz o Xy

And we can further define E(X) = {E(Xj;)}. For any const matrix A, B we have

E(AXB) = AE(X)B (4.13)

Some more complex parameter can be expressed in language of tensors.

3Here the correlation matrix is the matrix of Pearson’s Correlation Coefficients. Another frequently use correlation matrix called Cross

Correlation Matrix is
cross(X,Y) =E [X'Y] (4.9)
and cross correlation matrix with Y = X:

cross(X, X) =E [X'X] (4.10)
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[J Sample Representation (for random vector):
Sample of n items from population characterized by p variables
varl var2 ... varj var p
iteml [ x11 ri2 ... Tij ... Tlp
item2| x91 T2 ... T ... T
(4.14)
itemi| x;1 Tig .. Ty ... Tip
itemn \ Tp1  Tp2 ... Ty ... Tpp
Or represented in condense notation:
:E{ r1i1 T12 ... Tip
T
T xr21 T22 ... T2p
X = {:UU} =1 .|~ =|x1 T2 T.p (4.15)
,Q;'z: Tnl Tp2 ... Tpp
(] Statistics Representation
* Unit 1 vector:
1, = (1,1,..., D)7 (4.16)
——
k 1 in total
Unit 1 matrix: (Sometimes I also use notation 7y,)
11 1
11 1
11 ... 1
L -4 nXn
+ Sample mean of the j® variable:
T+ w0+ ...ty 1x
TS R it T LT S S (4.18)
n n
« Deviation of measurement of the j™ variable:
T15 — X
25 — Tj 1
dj=|"" " =a;~Fla= (T~ L)eg, j=12....p (4.19)
Tnj — X

¢ Covariance Matrix:
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— Variance of z.;:

1 1
2 = \2 .
sjj = 52 :nd;dj:n;(xkj—xj), i=1,2,...p (4.20)
1
=t;(I = ~Tp)zj, j=12....p (4.21)

— Covariance between x; and x;:

n

1 1 -
sij = -didj = — D (wwi — Ti) (e — T5), i j=1,2,...p (4.22)
k=1
(I——I) 5oai=12..p (4.23)

— Pearson’s Correlation Coefficient between x; and x;:

n
E xkz - xk] 73')
Sij o k=1
- )
Su\/% n

n
(rri — ZUZ E (g — l'j
k=1

Tij = i,j = 1,2,...]) (4.24)

k=1

In condense notation, define Covariance Matrix from sample of size n:

-811 512 ... Slp-
Sn _ 8.21 8?2 .' .. S?p (425)
_Slp Sp2 ... Spp_
and sample Correlation Coefficient Matrix:
_7"11 reo ... Tlp_
Rn _ ’r'?l T?Q .' .. T‘?p (426)
_Tlp Tp2 ... Tpp_

* Generalized sample variance: |S,,| = A1 Az... Ap, Where \; are eigenvalues of .S,,.

+ ‘Statistical Distance’ between vectors: to measure the difference between two vectors x = (z1, 2, ..., Zp)

andy = (ylayQa e 7yp)'

— Euclidean Distance:

dp(z.y) = \/(z — y)T(z —y) (4.27)

— Mahalanobis Distance: Scale invariant distance, and include information about relativity position:

dy(z,y) =/ (z —y)'S~Hz —y) (4.28)
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Remark: Mahalanobis distance is actually the normalized Euclidean distance in principal component
space. So we can actually define the Mahalanobis distance for one sample case & = (z1, z2, ..., Zp)

from distribution of (i, ¥)

dar(F) = \/ (& — B)TS1(F — fi) (429)

Note: the hyper-sruface d;(Z) = const forms a ellipsoid.

[J Sample Statistics Properties

Consider taking an n cases sample from r.v. population X = (X1, Xa,...,X,), population mean £ and

covariance matrix Y. Basic statistics are sample mean and sample variance

| 1 1 ' 1 1 1
X =-X1,, Sp = — <X — InX> (X — InX> =X <I — In) X (4.30)
n n n n n n
Properties:
_ - 1 n—1
E[X]=u cov(X) = EZ E[S,] = - z (4.31)

4.1.2 Review: Some Matrix Notation & Lemma

* Orthonormality: For square matrix P satisfies:

where x;, x; are columns of P.

 Eigenvalue and Eigenvector: For square matrix A, its eigenvalues \; and corresponding eigenvectors e;

satisfies:
Ae; = Ney, Vi=1,2,...p (4.33)
Denote P = [e1, €2, . .., €], which is an orthonormal matrix. And denote A = diag{A1, A2, ..., A\p}.
P
A=Y Xee] = PAPT = PAP™! (4.34)
i=1

is called the Spectral Decomposition of A

* Squareroot matrix: Def. as

p
A2 ="/ Nieie] = PAY2PT (4.35)
=1

Properties:

_ AV2AV2 Z 4,

_ ATY2 = (AY2)"l = ppl2pT,
tr(A) =327 Ans
Al =TT Ane
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* (Symmetric) Positive Definite Matrix: Say A a Positive Definite Matrix if
2T Az > 0, Vo € RP (4.36)
where 27 Az is called a Quadric Form.
Properties:
— Use the Spectral Decomposition of A, we can write the Quadric Form as
P P
ol Ar = 2" PAPTz = yTAy = " A\y? =) (V) (4.37)
i=1 i=1
— Eigenvalues \; > 0, Vi =1,2,...,p
— A can be written as product of symmetric matrix: A = QT Q (Q is symmetric);
Positive Semi-definite matrix is one with \; > 0
* Trace of Matrix: For p X p square matrix A
P
tr(A) =) a (4.38)
i=1
Properties:
— tr(AB) = tr(BA);
— 2/ Ax = tr(a’ Az) = tr(Axa’)
= tr(4) =25 A
* Matrix Partition: partition square matrix A as
pXp
Apn o A
A= q1Xq1  q1Xq2 (439)
Agr Ag
q2Xq1  q2Xq2
where p = q1 + ¢2
Property:
|A| = |Ag2||A11 — A12A2_21A21| = |A11]|Ag2 — A21A1_11A12| (4.40)
» Matrix Differentiation
Calculus Notations: Take derivative of y = (y1,92,...,Y,)’ overz = (21,2, ...,7,)T; or similarly of

matrix A over scalar, etc.
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We use 'Denominator-layout’, which means the result follows the shape of denominator:
[Oy1 Oy 9yq ]
oz, Oz, = 0Oy
, Oy1  Oyz Y2
oy _ 0Oy ox, Oz, =~ Oz, dy dy;
—= === 2 2 rlel=—) === 4.41
ox Ox . . . oz i Oz, (4.41)
9y Oy2 9yq
| Oz, Oz, Oz, |
Properties (under denominator-layout):*
0
R
9 r
- —z A=A
oz
T .
- = 2z;
8:5:6 x x
9 r T
- —axtAr=Ax+ A'zx
ox
0 2Ax
- 21 TA _ =
ox og(v" Ar) ol Ax’
14| _
- =|A]A~ Y,
_ O0tr(AB) BT
0A
otr(A~1B)
[ S — _A—lBTA—l
0A
* Kronecker Product: For matrix A = {a;;}, B = {bi;}. Their Kronecker product
mxn pXq
annB aieB ... a1nB
anB axB ... a,B
A®B= " (4.46)
aimB  ameB ... am,B
“More matrix diffrenciation equation see book [9] P49. Or can be easily derivated using Einstein sumation notation.
An example:
0|A] 0 ' o _
87 —aAl] EX” ©2,enns in A111A212 . Anln (442)
= EXiy (Mg oin Oki0i i Aty < (AARiy) - A, x (—1) TR (4.43)
k=1
=(=1) "™ EXiy, (A in AL - (MG - A, (4.44)

(4.45)
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* Norm:
— Vector Norm: for vector z,y € C™, norm || - || is a function C"™ — R, with:
Semi-definiteness: ||z|| > 0, = forz =0 (4.47)
Absolute homogeneity: ||kz|| = |k|||z|, k € C (4.48)
Triangle inequality: ||z| + |ly|| > ||z + v (4.49)

the £,-norm of x is
n 1/P
Izl = (Z \xﬂp) (4.50)
i=1
Useful norm:

% {o-norm: # of none-0 elements in z;°

% Lr-norm: ||zl = 300 @l

% (y-norm/Euclidean norm: ||z = /> i, 22

% {oo-nOrm: max |z;|.

— Matrix Norm: for matrix A, B € C™*", norm || - || is a function C"*" — R, with:
Semi-definiteness: ||A|| > 0, = forz =0 (4.51)
Absolute homogeneity: ||kA| = |k|||A]|, k € C (4.52)
Triangle inequality: ||A|| + || B|| > ||A + B]| (4.53)

further for m = n, i.e. A, B € C™*™, usually append

Sub-multiplicative: ||Al||B]| > ||AB|| (4.54)
Hermite: ||A|| = ||A™|] (4.55)

Matrix norm induced by vector norm:

| Az]|

Al = max
El

(4.56)

e.g. £, induced matrix norm:
m
% (1-norm: ||Alj; = max ) |A;]
<j<n ;4
% (o-norm/Euclidean norm: ||All2 = opmax(A);
n
% loo- Alse = A;il.
sonom: [[Allso = max ) 14y
Non-induced matrix norm, e.g.

1/2
% Frobenius norm: | Ay = (2;1 Dy |Aij|2) = \/tr(A*A)
s Weighted Frobenius norm: || Ay = ||W ~Y/2AW /2| p( or some textbooks uses || W /2 AW /2| )

>Note: actually triangle inequality is not satisfied for || - ||
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* Max norm: [|Al|max = max |A;;|
27-]

¢ Sherman-Morrison Formula:

T \—1 -1 AiluT’UAil
(Atut) = AT - T, (457
Or in matrix form:
_ _ A-1BA-!
(A + B) 1 =A L m, rank(B) =1 (458)

Application instances see https://vincent19.github.io//texts/MahalanobisAndLeverage/ and

https://vincent19.github.io//texts/DeletedResidual/.
* Woodbury Matrix Identity:

(A+UCV) t=A"t'— A lU(Cct+vAlu)tvat

4.1.3 Useful Inequalities

* Cauchy-Schwartz Inequality:
Let b, d any p x 1 vectors.
(Vd)? < (b'b)(d'd) (4.59)
» Extended Cauchy-Schwartz Inequality:

Let B be a positive definite matrix.

(Vd)? < (W Bb)(d'B~d) (4.60)

* Maximazation Lemma:

d be a given vector, for any non-zero vector x,

(2'd)?

z'Bx

<dBd (4.61)

Take Maximum when z = ¢cB~1d.

Section 4.2 Statistical Inference to Multivariate Population

Statistics model: a n cases sample X, Xo, ..., X,, where each X; i.i.d. from a multivariate population

(usually consider a multi-normal). i.e.

X1 Xio ... le X/l

Xo1 Xoo ... Xgp XIQ
X=1| ] ‘ S =1 (4.62)

Xin Xng oo Xnp X!
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4.2.1 Multivariate Normal Distribution

Univariate Noraml Distribution: N (u, o)

_ 1 (z — p)?
Multivariate Normal Distribution: X ~ N, (ji, X)¢
L (@ — ) \@ i)

Note: Here in the exp, the (¥—j7)'S~1 (#— i) is the Mahalanobis Distance d s defined in equation 4.29 ~ page 118

p(p+1)

Remark: A n-dimension multivariate normal has free parameters. Thus for a very high dimension,

contains too many free parameters to be determined!

Properties: Consider X ~ N, (u, X)

¢ Linear Transform:
— Forap x 1 vector a:

X ~ Ny(p,X) & a'X ~ N(d'p,a'Sa), Va € RP (4.65)

(Proof: use characteristic function.)

— For a g x p const matrix A:

AX +a~ Ny(Ap+ a, AL A (4.66)
— For a p x p square matrix A:
E(X'AX) = p/Ap + tr(AY) (4.67)
+ Conditional Distribution: Take partitionof X ~ N( ¢, ¥ )into X; and Xs , where ¢; +qo = p. Write
px1 px1 pXp %1 gax1
in matrix form:
X1 H1 Y11 X9
_ |ax1 p o= |o x1 N o= |BXa aXe (4.68)
px1 Xo px1 12 pXp Yo1 X9
q2x2 q2 X2 G2Xq1  q2Xq2
ie.
X1 H1 Y11 Yo
X = x| ot q1x1 ’ a1 Xq1  q1Xq2 (4.69)
px1 Xo 2 Yo Yoo
q2Xx2 q2%X2 g2Xq1  q2Xq2

Independence: X1 || Xo < Yo = X1, =0

Detailed derivation see section 1.8 ~page 32
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And the conditional dictribution X7 | X9 = x9 is given by
X1|xpmzs ~ Np(p1 + 212555 (22 — p2), X11 — L1255 Sa1) (4.71)
+ Multivariate Normal & x?
Let X ~ N,(u, X), then
(4.72)

(X =w)"S (X = p) ~ x5

4.2.2 MLE of Multivariate Normal

Under the notation in equation 4.62 ~page 122, i.e. each sample case X; i.i.d. ~ N,(u, ), we can get the

1 exp (_ Z"I (z; — M)/EQI(a;i - ,u)) 473)

S X (@155 n) = W ;
=1

joint PDF of X:

and at the same time get likelihood function®:

! exp [;tr (E_l (Z(l‘l —Z)(x; —3) +n(T — p)(T — ,u)'))]

L(M,E;xl,...,$n):W —
(4.75)

And we can get the MLE of ; and ¥ as follows’:

1 n

h=— r; =1 (4.76)
e
1 — n—1

A Note: In this section, S is used to denote 3, which is different from that in section 2.1.1 ~page 38

(52 for 3)

And we can furthur construct MLE of function of 1, 3 (use invariance property of MLE), for example

=3 (4.78)

Note: (ji, %) is sufficient statistic of multi-normal population.

"In equation 4.66 ~page 123, take

I — 1255,
A = axq ax(p—q) (4.70)
pPXp 0
(p—qa)xq (p—q)x(p—q)
8Here we need to use the property of trace
(4.74)

' Az = tr(z' Az) = tr(Ax'z)

Detailed proof see *Applied Multivariate Statistical Analysis’ P130
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4.2.3 Sampling distribution of X and S

n—1
n —
00 Sampling distribution of X

[L:Xandf]:

S are statistics, with sampling distribution.

Similar to monovariate case:

X ~ Ny(p, %) (4.79)

n
0 Sampling distribution of S
+ Monovariate case: Consider (X1, Xo, ..., X,,) iid. ~ N(u,0?)

Then
(n—1)S
2z X72171 (4.80)
* Multivariate case: Consider (X1, Xo, ..., X)) i.i.d. ~ Np(p, X)

Then
(n—1)S ~Wp(n—1,%) (4.81)

Where W),(n — 1, %) is Wishart Distribution, details as follows:

For rv. Zi,2s,...,Zy iid. ~ N,(0,%), def p dimensional Wishart Distribution with dof m as
W,(m, )10

W, =Y ZZ (4.82)
=1

PDF of W,(m, ¥):

—1

m— 1
lw| 2 exp(—Qtr(E_lw)>

fw(w;p,m, %) = 5 - (4.83)
2m T|-1/2 p(p=1) r m—1
Fise
CPF.
o(T) = |I, — 2iXT| = (4.84)
Properties:
— For independent A; ~ Wj,(m1,3) and Ay ~ Wy, (my, X), then
A+ Ay ~ Wp(m1 + ma, 2) (4.85)
— For A ~ Wy(m, X), then
CAC' ~ W,(m,CEC") (4.86)

YW, (m, X) is a distribution defined on p x p matrix space.
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— Wishart distribution is the matrix generization of x2. Whenp = 1, ¥ = 02 = 1, W, (m, X) naturally

reduce to x2,.

X%z =W (na 1)

> R. Code

Distribution functions are in package MCMCpack, or use rWishart () function.

00 Large sample X and S

« V(X = p) 5 N, (0,2):

* (X —p)STHX =) = x

4.2.4 Hypothesis Testing for Normal Population

* One-Population Hypothesis Testing:

Conduct hypothesis testing to p:
Ho:pp=po < Hy: p# po

O Hotelling’s 7 test

— One-Dimensional case: t-test

1.€.

T? = [Vn(X = po)lS™ V(X — po)l ~ 171 = Fip

— Multi-Dimensional case: Hotelling’s 77

T? = [VA(X = o) |~ V(X = o)) ~ —L—(n = 1) Fpy

p

And we can get the distribution of Hotelling’s 72

n—p T?
~ Fpnp
p n—1
Rejection Rule:
5 _pln—1)
T n — p FPv"—P,a

Property:

Invariant for X transform: For Y = CX + d, then

T} = n(X — po)'S™H(X — o) = Tk

(4.87)

(4.88)

(4.89)

(4.90)

4.91)

(4.92)

(4.93)

(4.94)
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O LRT of /i
Monovariate case see section 2.4.3 ~page 60.

LRT uses the statistic:

L(po, % T2
_ maXHo (/'LO’ ) — (1 + )—TL/Q (495)
maxp,ur, L, X) n—1
where T2 = n(Z — o) S™H(Z — o)
* Two-Population Hypothesis Testing:
Conduct hypothesis testing to § = 1 — po:
Hy:0=00— H1:0# g (4.96)
Notation: The two sample of size n1, no, each denoted as
Xl,ij XQ’/L']' (497)
with mean p1, po and covariance matrix 31, >o
— Paired Samples: n; = no
For two paires samples { X1 ;;}, X2 ;;, take subtraction as
Dij = Xi,i5 — X5 (4.98)
denote D= -5 D, 52 = —L S (D _ DY(D, — D)
_7’L =12 D_TL—]. j=1 J J
and conduct test to
H02D250(—>H1!D§é50 (499)

And the folloeing steps are as in One-population testing, test

_ _ —1
T2 = n(D — 6)(8%)"Y(D - §) ~ qu,n,p (4.100)
n—p
— Under Equal Unknown Variance: X1 = X9
_ 1 _ 1 &
X, =— : == ; :
1= ZXLJ X = - ZXLJ (4.101)
7j=1 7j=1
1 & 1 &
Si=1"1 ;(Xl,y X)Xy =X S =y ;(XZJ X2)(Xa; — X2)* (4.102)

And denote pooled variance

1 Wp(nl +ng — 25 E)
g3 (1 DS (2 = )5~

Spooled = (4- 103)

ny+ng —2
Under Hj, we have

1 ) B . 3 _ p(nl +n2 — 2)
i(xl - Xo — 50)/Spooled<X1 — X2 —do) ~ ni+mnz—p—1

T2 =

Fpnytny—p1 (4.104)

ni ny
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4.2.5 Confidence Region

Estimate the confidence region for ;o of X ~ N,(u, X), Monovariate case see section 2.3.3 ~page 54

* Confidence Region:

Also use Hotelling’s 72

n—p T?
p n—1 ~ Fpm—p (4105)
And take 100(1 — a)% confidence region of 1 as
R@) = {alT@P <) &= P (= DFnps (4.106)

The shape of R(x) is an ellipsoid.

¢ Individual Converage Interval

Use the decomposition of S as a positive definite matrix S = AT A, where A is some p x p matrix, then
T2 = [Vn(X = o) 1S V(X — o)) = [A™ V(X — o)) [A™Vv/n(X — pao)] (4.107)
Thus denote Z = A~ V(X — po) ~ Np(0, A"V A1), the T estimator of Z would be

_ _ _ .1
T3 = VnZ)S;' WnZl=nZ'Z ==Y Z} ~ Fynyp (4.108)
n
=1

As a simplified case, we can take the Individual Converage Interval of Z;, which is

Z,
VnZi tho1 (4.109)
SZZ-
And we can take the Confidence Region'! as
n
R(z) = @(Zi 57t 1 5) (4.110)
1=
where [ taken with Bonferroni correction
l—pB=1-« (4.111)
Note: Consider that
P@ll Z;inCl;)) >1—-mf=1-« (4.112)

So the real CR for y should be larger.

The shape of R(x) is an oblique cubold.

""The confidence region of Z can be transformed to that of X using Z = A‘l’(f( - X).
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4.2.6 Large Sample Multivariate Inference

Basic point:

x4y s34y (4.113)

* One-sample Mean:

(4.114)
* Unequal Variance Two-sample Mean:
_ _ 1 1 1 1 1 1
X1 — X5 i) N <,U,1 — o, —X1 + 22) — 51+ —59 i> —Y1+ —9 (4.115)
n no ny n2 ni n2
Test:

7% = (X1 — X2) = (1 — )]’ (n1151 + 73252)1 (X1 — X2) — (1 — p2)] & 2 (4.116)

Section 4.3 Principal Component Analysis

PCA and next subsection FA focus on data dimension reduction. Why?

O ‘Curse of Dimensionality’

« Difficulty in computation complexity: Many algorithms has complexity O(n?) or more, high

dimension n cause high complexity.

* Hughes Phenomenon: As the number of feature dimension increases, the classifier’s perfor-
mance increases as well until an optimal dimension. Adding more features based on the same

size as the training set will then degrade the classifier’s performance. ¢

“Example: Volumn of unit sphere in n-dim space

Vy—qe_ 1, (2me n/2—>o (4.117)
" L(1+n/2) n '

i.e. data will naturally become ‘sparse’ in high dimension data — difficult to extract information.

Key Idea of PCA: Find the components most powerful in explaining variance. (Similar to the idea of

ANOVA)

4.3.1 Population Principal Component
For population X = (X1, X, ... , Xp) ~ (1, X)p, conduct spectrum decomposition to ¥ such that

SP=PA  P=l|enen...p) A=diaglhide, b M= =2, (4.118)

where (\;,¢;) is the i eigenvalue-eigenvector pair of ¥, large ); suggests X is more ‘extended’ in e;

direction(large variance).
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Then the Principal Components Y = {Y;}
Y = P'X ~ (P'u, P'SP), = (P'p, A) (4.119)

i = 6/1X ~ (6/11’67)‘1)

(4.120)
Yy = e X ~ (e \y)
Properties & Definitions:
e Trace of cov. matrix:
P P p p
Zaii = Z’uar(Xi) = Zvar(Y;) = Z i (4.121)
i=1 i=1 i=1 i=1

* corr between Y;, X;:
oy x = cov(Y;, X;) _ (€i)j v\ (4.122)
T VAT V5

* Factor Loading:
FLZ']' = (ei)j \ )\,L (4123)

» PC Score:
PCScore; =Y; = e; X orY; = (X — p) (4.124)

In practice, we pick the first several m PC such that

m

Z pAi large enough (4.125)
i=1 Z A
k=1

Note: Another important point for PCA is the interpretability of principal components.
A coutinuous version of PCA in stochastic process is Karhunen-Loéve Expansion in ?? ~page ??.
(] Standardized Principal Component

To cancel out the influence due to scale, we can also obtain standardized PC from Z = (V))~1/2(X,,), where

V' is standard deviation matrix as def. in equation 4.6 ~page 115.
And we have Z = (21, Za, ..., Zp) ~ N,(0,V~1/25V=1/2") = N,(0,p). Then obtain (\;,e;) pairs'2
from p to form PC.
pP=P\A P= [61,62, . ,,ep} A = diag{\, Azs- o Al AL > Ae > >N (4.126)
Then the Principal Components W = {W;}
W =PZ~(0,PpP),=(0,A) (4.127)
Wy =e\Z ~ (0,\)
(4.128)

Wy = e, Z ~ (0, )

Properties:

"2The eigenvalue-eigenvector pairs obtained from p is generally different from 3.
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* Trace of cov. matrix:

P
Z var( Zvar = Z Ai=D (4.129)

* corr between Y;, X;:
pwiz; = (€ VN (4.130)
4.3.2 Sample Principal Component

For sample matrix X denoted in equation 4.62 ~page 122, with cov. matrix S in equation 4.25 ~page 117.

Then conduct the above spectrum decomposition to S to get sample PCs.

~

= PAP  P= [él,ég,.,_,ép} A =diag{\i, Ao, ..., A}, A1 > Ao > .

v
g

. (4.131)

Properties and Definitions

¢ Trace of cov. matrix:

p p
> si=3 A (4.132)

=1 =1
» Sample corr & factor load:
CGHTRYRY
Gop) — : 4.133
p(Gi, x5) NoT ( )

[0 Large Sample & Normal PCA

Under normal assumption or large sample case, i.e.

X ~ Ny(p1, ) or X 5 Ny (1, %) (4.134)
We can examine the (asymptotic) distribution of (5\1, Ao, .., ;\p) and (€1, €é2,...,6p):
« ) distribution:
V(A = A) ~ N, (0,2A%) (4.135)
* ¢, distribution:
. Ak
V(e —e) ~ Np(0,E;), Ei=X\)Y o oz ke (4.136)
* Independence:
i llé; (4.137)

Section 4.4 Factor Analysis

Key idea of FA: For a model with p variable X = (X1, X»,...,X,) ~ (i, X), (especially when p large and

X; interrelated), there would be some internal, latent factors F' behind X determining the model structure.'3

13 As the most simplified case, here only consider X linear dependent on F.
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4.4.1 Orthogonal Factor Model

X—p=1 F+¢ec,m<p (4.138)
px1 pXmmx1l px1

where L is the const loading matrix ; F' is r.v. factor; and ¢ is r.v. error.

X1 i b ... Ui Fy €1
Xo by lag ... Loy Fy €9

x= | = p= | e | (4.139)
_Xp_ _Zpl lpo ... Epm_ _Fm_ _€p_

Note: Intuitively, we cannot estimate (m + p) (unobserable) r.v. from p r.v., so we need the following

assumptions on F' and

E(F)=0 cov(F) = I,
E(e) =0 cov(e) = ¥ = diag{vr, ¥2, ..., Uy} (4.140)
ell F & cov(F,e) =0

Derived Conclusions:

» Representation of >::

cov(X)=X=LL+¥ (4.141)
— Diagonal Elements:
m
var(X;) =Y 0 + i = h + (4.142)
k=1

where h? is Communality, 1); is Specific variance.

— NonDiagonal Elements:

COU(XZ', Xj) = Z &mgjm (4.143)
k=1
« relation bet. X and F':
cov(X,F)=1L (4.144)

[0 Factor Rotation

For any orthonormal rotation/reflection matrix T , L = LT satisfies the same factor model (with a different
mXm

F):

X=LF+e=LTT'F+e=LF+e¢ L=LT,F=TF
S=LL +¥=LL+T

Comment: Factor rotation reflects the arbitrariness of selection of L, allowing us to choose an interpretable

L for FA model.




Tuorui Peng CHAPTER 4. % T4t 5473 % 133

4.4.2 Principal Component Approach

Origin: when m = p, factor decomposition reduces to spectrum (PC) decomposition.(At the same time ¥
can be taken 0.)
X =LF+e=PY =Uv=0

(4.145)
Y =LL + U =PAP' = L=PA/?
m
Then take the first m eigenvectors to form L, and use ¢; = o; — kzl Efk as an approximation.
S=LL+V L= |/Aew,Viges ... «ﬁAmem] U = diag{ui} (4.146)

0 Sample Factor Decomposition

From sample cov. matrix S and eigenvalue-eigenvector pairs (5\27 ei), pick the first m paris to form L =
{1}
m
L={ly} = [Vhern Vises,.. Vanen] ¥ =diag{sa =Y 5 (4.147)
k=1

¢ Selection of m: Construct Residual Matrix

E=8—(LL + ") (4.148)
Residual matrix is trace 0, pick m such that

P
Sum of All Elements in E < Z 5\% small enough (4.149)
k=m+1

4.4.3 MLE Method

Assumption: Factor F' and error € are normal.(Then also X ~ N, (u, X) is normal)

F ~ Np(0,1,) €~ Ny(0,%) X ~ Ny(p, %) (4.150)

Likelihood Function:

L(p, ) = (2m) 72|52 exp (—;tr [zl (Z(azk — &) (zp — 7)) +n(@ —p)(z — M)’)] ) (4.151)

k=1

Maximize L to get Land U, usually for convenient (and to counteract the arbitrariness of factor rotation) we

further assume

L'U~1L = = (diagonal matrix) (4.152)

« Estimtor of communality variance h?:

hi=> "Iy (4.153)
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Section 4.5 Canonical Correlation Analysis

Key idea of CCA: For a model with two multivariate population X M = (X 1(1), Xél), R X;(;l)),
x® = (x? xP . x{) with covariance

by by
sy o= |7 TR (4.154)
(p+q)x (p+q) Yo1 Y99

find a few condensed variables to measure their similarity.

4.5.1 Canonical Variate Pair

By using the linear combination, we can construct a pair of vector o and b such that corr(a’ XM o' X))
pX gx1
large, i.e.

'Y12b
{a,b} = argmax 4212

ap£0 Va'X11a/ b E22b

where U; = o/ XM, Vi = ¥ X @ with var(U;) = var(Vy) = 1 are the (first) canonical variate pair, and

(4.155)

pi = corr(Uy, V1) is the (first) canonical correlation.
Similarly, the k™ canonical pair (Uy, V;) satisfy the same criterion as equation 4.155 ~page 134 but with
ay € span{ay,...,ax_1++, by € span{by,...,bp_1}+, k < min{p, q}.

Result: Uy, Vi can be expressed as

Uy = a, XD = et 22 x0 v =5, Xx@ = g2 /2x®@ (4.156)
where e, is the kP eigen vector 0f2;11/22122521221211 , fristhe kth eigenvector ofEQQ/ 221211 Y122, 1/2.
er and f, satisfies:
1
fo= =352 57 e, en 72 15155 i (4.157)
Pk k
4.5.2 Canonical Correlation based on Standardized Variables
Using standardized variable of X:
, x® _ @
ZW =k Pk k19 porg =12 (4.158)
o¥)
kk
with covariance
p —y-liesy-lz_ (PP (4.159)
(p+a)x(p+q) P21 P22
And similarly, the CCA pair is
Uy = al 20 = e p 220 v =1,.2@ = fp*2@ (4.160)

with ey, is the k™ eigenvector of p1 1712 12055 p21 pl_ll/ 2, Jik] is the k™ eigenvector of p2_21/ ? po1 1L p12 p2_21/ 2,

and
1 _1/9 -1 1 10
fk = EPQQ/ ,021P11/ €L €= prH/ /)12P22/ fk (4.161)
k k
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4.5.3 Sample Canonical Correlation

Replacement:

Y—S p—R (4.162)

to get
U=Az"Y VvV =PBzs® (4.163)

and we can use U, V', A, B to express S12 as

i 0 ... 0
o op o of
Sp=At| (B~ (4.164)
00 ... p

When applying CCA, we pick the first r canonical variable, thus some infomation is lost. But we hope the

first 7~ canonical variables can contain enough information of X () and X (%)

Determine of : consider the error if approximation by expressing

Ail - [a17a27"'7ap] Bil = [/81752a~--7ﬁp] (4165)
and
P
S12=>_ pieif; (4.166)
i=1
R R P
S =A"YATY =) aa] (4.167)
i=1
R X P
Sae =B~H (B =" B (4.168)
i=1
Total sample variance explained by the first » canonical variables:
r ! v r /3.
iz % iz Bifi (4.169)
tr(S) tr(S22)

Section 4.6 Discriminant Analysis

Key idea of DA: for X with an extra column labeling the classification, we want to determine a rule to
nxp

assign new objects. More specifically, determine the classification region R; for each class ;.

More on this topic see section 9.2 ~page 246 and section 9.3 ~ page 251.

4.6.1 Classification Criterion

» Two-category classification case: Each row of X is labeled in 7; or o, for two-category, only one of R,

R is needed.

Some basic concept in classification model:
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— Prior Possibility p;, ¢ = 1,2;

— Penalty for misclassification ¢(i|j), 7, j = 1, 2: cost if a ; object is classified in R;.

— Conditional Probability P(¢|j), ¢, j = 1, 2: probability that a 7; object falls in region R;
0 Determination Criterion:

» Expected Cost of Misclassification (ECM) Criterion: Minimizing ECM,

ECM = ¢(2|1)P(2|1)p1 + c(1]2)P(1]2)ps (4.170)

For two-category problem, R;, Ry can be determined as

- 1|2
fro () — c(21) p1
fri () _ c(1]2) po
Ry =01 = arg 2770 < —= (4.172)
He z€ER f7r2 ($) C(2| 1) 4!
* Total Probability of Misclassification (TPM) Criterion: Minimizing TPM,
TPM = P(misclass) = P(2|1)p1 + P(1|2)p2 (4.173)
actually argmin TPM = argmin ECM
(112)=c(2|1)
* Posterior Probability Criterion: Maximize posterior probability P(m;|xo),
P(X € m|X = x0) = Pifri(a0) Li=1,2 (4.174)
p].fﬂ'l (xo) + p2f71'2 (CUO)
Also equivalent to ECM for ¢(1]2) = ¢(2]1)
Here only introduce ECM: {R;} = argmin ECM
ECM(i) = " c(jli)P(j|i) (4.175)
JFi
g g
ECM = " pECM; = > > e(jli)p(jli)p; (4.176)
i=1 i=1 j#i

4.6.2 Linear & Quadratic Discriminant Analysis

Now take two-category ECM criterion as example. An estimation to P(1|2), P(2|1), i.e. to fr,, fr, 18
needed.

Assumption: for 7y : X ~ N(u1,%1),m2 1 X ~ N(u2,X9), further for

* 31 = Yp = ¥ Linear Discriminant Analysis (LDA).

fro() = W exp (—;(:p — )S N (a — M)) =12 4.177)
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then
_ 1 _ c(12) p2
Ry = — )Y e — S (g — ) 2 (i — o) > 1 = 4.178
1 xaé%(ﬂl p2) 7 = 5 — p2) B (p1 — p2) 2 In @) (4.178)
_ 1 _ c(112) p2
Ry = — ) S e — (= )’ S (g — pe) <1 = 4.179
2 fé%(’“ p2) B — S — p2) X7 (1 — pz) <n ) (4.179)
Note that L.H.S. is a linear combination of z, thus called LinearDA.
Sample estimation to 3.: use pooled variance in equation 4.103 ~page 127.
* 1 # Yo: Quadratic Discriminant Analysis (QDA).
= ! L )S ) ), i=1,2 4.180
fm(x)*WeXP _i(x—/iz) (@) ), i=1, (4.180)
then
1 _ _ _ _ 1 3 1 _ _ c(1]2
Ry = — 555/(21 t- Xy D+ (1125 = T8 D — B In (:E;:) + 5(:“’/121 Y — T8 'p2) > In ( ]2
(4.181)
1 _ _ _ _ 1 3 1 _ _ c(12
R == 3/ (55 = 5 e+ (7 = 3y e = g (5] S04 - 6%y ) < n (10
(4.182)
Note that L.H.S. is a quadric form of x, thus called QuadraticDA.
* Two extension: allow more flexible estimation to variance:
— Si(e) = a®; + (1 — @)%, shrink between QDA and LDA;
— 3i(7) =42 + (1 — )62, shrink toward scalar cov.
4.6.3 Fisher’s Discriminant Analysis
Project X onto some hyperplane and conduct low-dimensional classification.
f treatment?
Project x onto some hyperplane by y = a’x, then we maximize ¢ = fhcah o] Teallment 14 . 1.e.
variance
¢ 2 ! g l
(v —py)? d (=) (i —p) )a
= =L S US| _ @Bua (4.186)
ol a'a a'Ya '

“MANOVA Model: For g groups with same X, consider an MANOVA model: X;; = p + 7; + ei;. Then MANOVA table gives Sum
of Squares and cross Products (SSP):

g
Regression: B = Z ni(z; — 2)(Ti — ) (4.183)
i=1
Error:W = ZZ Tij — Ti) (@i — i) (4.184)
i=1 j=1
Total:T = B+ W = ZZ (zij — Z)(zij — &) (4.185)
=1 j=1

use B and W to measure the variance of sample.

c(21) pr

g
g

c(21) pr
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Result: a is the largest eigen vector of W1 5.
Relation between FDA and LDA: in FDA, take the first £ eigenvectors to conduct classification, thus loses
more information. But when ¢ = g — 1, FDA = LDA."®

4.6.4 Evaluation of Discriminant Model

0J Judging Index:

* Total Probability of Misclassification (TPM):

TPM = p1P(2|1) 4 p2P(1]2) = p1 fr, (x) dz + p2 fry () dz (4.187)
Ro R1

» APparent Error Rate (APER): used with cross validation (CV). The fraction of misclassification in training

set.

Section 4.7 Clustering Analysis

Key idea of CA: Group a collection of data according to similarity and relation of objects.

More about this topic see section 9.5 ~page 258.

4.7.1 Agglomerative Clustering Algorithm

O Clustring Algorithm

Hierarchical clustering: start with individual points and combine them to form groups.

Algorithm Hierarchical Clustering

1. All kK = n points are individual clusters;

2. In each iteration step k:

(a) Use a distance/dissimilarity matrix D to express distances between clusters; the *distance’ between
kxk

clusters is diversified, choice of which see the following part;

(b) merge the closest pair of clusters(or points) to form a larger cluster, and now number of clusters
©) k=k—-1;
3. Only k£ = 1 cluster is left

4. Choose a proper threshold of distance to determine K

[J Choice of between-cluster distance: To express distance between two clusters A and B,

+ Choice of distance functional D(-, ):

""Because a is eigenvector of W ™' B, while tk(B) = g — 1, thus there are g — 1 non-zero eigenvalues at most.
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Euclidean Distance Dg;

Mahalanobis Distance Dyy;
|ANB|

Jaccard Distance Dy =1 — ;
! |AU B

— etc.

¢ Location choice of cluster:

Complete link: max D(a € A,b € B);

Single link: min D(a € A,b € B);

— Centroid distance: D(A centroid, B centroid);

Group average: (D(a € A,b € B))

* Note: pros-and-cons of agglomerative clustering algorithm

No assumptions for final £ needed;

Intuitive display of relations;

Large computational requirement: ~ O(n?3);

Sensitive to noise and outliers.

Dendrogram

O W o << O

& 4.1: Tllustration of Hierarchical Clustering

4.7.2 K-Means Clustering Algorithm

Assume we have a preset number K of clusters , we can use K -means clustering.

Algorithm K-Means Clustering

1. Choose/Preset number of clusters K;
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2. Select K points as initial centroids, useful methods:

* Randomly select;
» Use Centroid of agglomerative algorithm;
* Successively pick the farthest point from others.
3. In each iteration of centroids:
(a) For all points i, calculate its distance from the ™" centroid D (i, )
(b) Classify each ¢ point to the nearest centroid cluster;

(c) Re-calculate the centroid of new K clusters;

4. Repeat until convergence.(Convergence criterion can be e.g. (>, D(i € g;,1)) — const)

Note: pros and cons of K-Means clustering algorithm:
« Efficient: ~ O(n);
« Sensitive to outliers;

* Ineffective for non-convex shapes.

4.7.3 Gaussian Mixture Model with Expectation Maximization Algorithm

The Gaussian Mixture Model (GMM) for clustering assumes X is generated from a mixed distribution of K

normal, i.e. X has probability 7; to be generated from corresponding normal N (i, 3;):

K K K
X~ mN(u, ) =Y mN(), Y m=1,m>0. (4.188)
=1 =1 =1

4
Use its likelihood function L(6; z:) and maximize posterior probability by 29:

N K 1 1
L({m},{0i};2) = HZWW exp <—2(l’z‘ - Ml)lzl_l(l'z‘ - Ml)) (4.189)

=1 =1

E-M Algorithm uses the ELBO maximizing method, detail see section 5.5 ~page 183. For simplification
express 6 = {Um;, Uy, US; }. The maximizing function Q(6|6()) for GMM model and corresponding iteration:

7Dzl S

N K
07— arg Q00 —ang e Y5 om0, = A
i=1 1= O 1) W
11=1 j;le Pl 257)

(4.190)

Lagrange Multiplier: Extreme value arg max Q(0|H(t)) with constraint Z{il m; = 1 requires
0

(t) (t) (t) K _
9QUIT) _y 9QUIT) _y 9QUIT) AR Z) o gy Kk @191
o, 0%, om
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Result:
% . '(t)mi
(t+1) =1 il
(t)
;'Yil
N / (4.192)
- Z:l%z (w5 — ) (25 — ) '
=l N0
;%l
t+1 1 N t
- Lew oo

NOp Wl(t)¢($i|/~tl(t)725(t))

il — K
> 7ol =)

(4.193)

where 7;; is the posterior probability that the i object belongs to the I group.

The above constraint equations are difficult to solve, use iteration algorithm:

Algorithm EM-Algorithm for Gaussian Mixture Model

1. Use e.g. K-means method to set an initial estimation as (;11(0), 21(0))7 frl(o) =1/K;

2. Repeat Expectation & Maximization:

(@) Expectation-Step: Compute posterior of latent variable on each point;

NO Wl(t)sb(l‘iml(t), El(t))

V== ., 1<i<N, 1<I<K (4.194)
£ ot 3

(b) Maximize-Step: Re-calculate parameters {1, 3, 7} by equation 4.192 ~ page 141.

3. Repeat until convergence.

Note: EM method for Gaussion Mixture Model is a greedy algorithm — local maximum.

4.7.4 DBSCAN & OPTICS Density Clustering Algorithm

DBSCAN algorithm (Density-Based Spatial Clustering of Application with Noise) is a kind of density clus-
tering algorithm. OPTICS algorithm (Ordering Point To Indentify the Cluster Structure) is its improved version.

O DBSCAN Algorithm Key (preset) index in DBSCAN:

* Eps e: Radius of neighbourhood of a point;
* MinPts M: Minimum number of points to be indentified as cluster core point, usually choose M > dim—+1;

* (Also, a distance norm is needed, e.g. Euclidean D).

Notation:
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* ¢ neighbourhood of point x;:

Ne(z))={yeR":0< D(y,z) < e} (4.195)

* ‘Density’ (is actually an integer):
pe(;) = #a; € N () (4.196)
* Three types of Points: X., Xpq, Xnoi-

— Core Point: label an x; as core point if
pe(zi) > M (4.197)
Denote the set of core point as X, and set of non-core point as X,,.

— Border Point: label an z; € X, as border point if
3(1'@ S Xc) S Ng(xj)&xj € Xne (4.198)

Denote the set of border point as X
— Noise Point: the set of noise point is
Xpoi = CxetXed (4.199)
¢ Point Relations: DDR, DR, DC
— Directly Density Reachable: For z;, z; € X, ifx; € X, zj € Nz(x;), then say x; is DDR from z;;

— Density Reachable: For point chain z;,, z;,, ..., z;,,, m > 2. If z;_, is DDR from z;,, V1 < k <

m — 1, then say z;,, is DR from z;;, .

— Density Connected: For point x;,, x;,, Zi,, if x;, and x;, are both DR from x; , then say x;, and z;,

are DC.
Note: DR is not symmetric for z;, and z;,, ; while DC is.

DBSCAN algorithm classify all points that are Density Connected to each other into a cluster C' C X, i.e.

Maximality:x € C&&y DR fromz = y € C (4.200)

Connectivity:z,y € C = x,y DC. (4.201)
Pros and cons of DBSCAN:
« Insensitive to noise;
* Based on density, with no constraint on the shape of cluster;
* Suitable for clusters with uniformly densed data, otherwise difficult to choose proper Eps ¢;
+ Complexity ~ O(n?), at least O(n logn).

[J OPTICS Algorithm

OPTICS is based on DBSCAN and shares most of the basic concepts and ideas. Further define the following
distance (preset € and M):
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* Core Distance: For x; € X, the smallest distance allowing z; to become core point.

CD(z;) = D(xs, NM (), pe(2i) > M (4.202)

where N (x;) is the M'™ closest point from a;;

» Reachablity Distance: Fory € X, x; € X, C X,

RD(y, z;) = max{CD(x;, D(y,z;))} (4.203)
Or equivlantly
RD(y, z;) = arg min d (4.204)
pa(wi)>M,yeNg(z;)
Algorithm flow:

Algorithm OPTICS

1. Construct X, based on preset M, ¢;

2. Pick an ‘unprocessed’ point x,,, € X, and calculate RD(z, z, ), V‘unprocessed’z; € Ne(xp,) N X, Pick

the z; € X, with smallest RD and label as x,, , processed;

3. Repeat step 2 until all points are processed. Output {2, } = (Zn,, Zn,, .- Tnx, ). Each z,, is attached

with a CD(z,,,) and a r(z,,,) := RD(xp,_,, 7n,)'°.

Then break the ordering sequence n; according to r(zy,), .e.g. break n; if r(x,,) > €

Comment: OPTICS is more stable than DBSCAN, capable of dealing with multi-density clustering.

'SFor i = 1, just define as 0




Chapter. V.  ZititBESHHEER S

Instructor: Zaiying Zhou

Section 5.1 Algorithm Theory Introduction

5.1.1 Finite Precision Computation

An arbitrary real number € R is represented as (the nearest adjacent) float number v,. A float is basically

stored as (example take 32-bit float): 1 bit Sign + 8 bit Exponent + 23 bit Mantissa.
23 ‘
vy = (—1)% x 2E7127 (1 +) (M x 2‘%)) (5.1)
i=1

Further, extreme value of (M, E) is used for some ‘special value’: denormalized number, NaN, inf, etc.

+ Denormalized number: to fill the gap [0, £27126](E = 1), for E = 0 extremely small number, definition

use

23
Udenormalized = (_1)S x 217127 (0 + Z(Mz X 2_Z)> (5.2)
i=1
i.e. for B = 0, range [27127 27126) . — [0, 27126 4enor.

* NaN: (E = 255, M # 0)

e inf: (E = 255, M = 0)

EZO O<E<Emax E:Emax
M=0 40 +oo
Unormalized
M #0  venormalized NaN

% 5.1: (De)Normalized Number

Use v, to represent r: approximation r ~ v,., the round-off error of r:

 Absolute rounding error:

e=|r—u (5.3)
144
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* Relative rounding error:

|r — vy

= const 5.4)

Emachine = |T"

Note that for large ||, the adjacency between floats | — v,.| = |r|emachine Might be large, even cause some integer
missing.
0 Representation and arithmetic of floating-point number follows IEEE-754 standard
* For 32-bit float (single precision float): 1 bit Sign + 8 bit Exponent + 23 bit Mantissa. €machine = 0.5 X
2—23 — 2—24
23 .
v=(—1)% x 2F7127 (1 + ) (M x 2—1)> € [-3.4 x 10%,3.4 x 10%] (5.5)
i=1
* For 64-bit float (double precision float): 1 bit Sign + 11 bit Exponent + 52 bit Mantissa. €machine = 0.5 X
9—52 _ 9—353

52
v =(—1)% x 2F71023 » (1 + ) (M x 2—1')> € [~1.79 x 10%%8,1.79 x 103%%] (5.6)
=1

Key point for algorithm design: aviod plus/minus of numbers of significantly large magnitude difference.

5.1.2 Stability & Accuracy

¢ Forward/Backward Error:

For a algorithm design f of a problem f, with input x. Denote:

Expected output: y = f(z)

Algorithm output: § = f(z)
Forward Error: Ap = f(z) — f(x)

Backward Error: Ap = argmin |7 — z|
F(@)=f(x)

— R

some X with f(%) = 7(x)

f f

K] 5.1: Tlustration of Forward/Backward Error
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* (Forward) Stability: An algorithm f is stable if
If () — f@)] 12 — |
=0 ie), V =0 - 5.7
Hf(f%)” (Emachlne)y ||9€H (Emachme) ( )
» Condition Number of problem f:
— Absolute condition number:
16 (= H
R(x) = lim sup (5.8)
=0 |l52[<e ||5$||
— Relative condition number:
|lo
@) tim sup 171151 59
=0 |afi<z [102[l/[l]|
(Relative) Condition Number of Matrix A
mXm
- flz) =
[ ]] 1
= [l All < [ AlIA™ (5.10)
[ Az|
— f(b) =solving Ax =b
A1y el <A A 5.11
k= H” H LA™ [H[I-A] (5.11)
Thus for matrix A, denote
k(4) = [Al]A7Y (5.12)

— For #3 norm || - ||2: k(A) = 00—11
m

5.1.3 Iteration Algorithm

Iteration methods are used especially for problems without analytical solution, to obtain a numerical solution.

Iteration method: for problem f with solution x* design an iteration function g: X — X so that

lim g'"(z) = lim g(g(g(...g(g(z))...))) =2

n—o0 n—oo D ——

n

(5.13)

then get solution by setting initial input value 2(°) and calculate z(**1) = g(z(*)) repeatedly until conver-

gence as approximate solution.

[ Three Steps for Iteration:

Algorithm General Steps for Iteration

'Knowledge about matrix norm see section 4.1.2 ~page 118
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1. Starting: set z(?), more trials to initial value is recommended
2. Updating: 21 = g(z®)), vt =0,1,2,...
3. Stopping: when to stop, can choose various stopping criterion, e.g.

» Absolute convergence criterion
|2t — 20| < ¢ (5.14)

» Relative convergence criterion

,x(tﬂ) _ x(t),

PO ¢ (5.15)

« Relative convergence criterion (2), avoid (¥ = 0
,x(tﬂ) — x(t),

e ¢ (5.16)

0O Convergence Order and Convergence Rate
For each iteration value z(*) , define iteration error as e® = £() _z* Then an iteration method lim; oo et =

0 has convergence order o and convergence rate c as:

i |€(t+1)]
= RO (5-17)

A large o and small c declare a quick convergence.(Large « is needed more)

Comment: Actually convergence rate and order are generally dependent on specific problem, so we usually

estimate «, ¢ using some approximation/scaling to represent a generally case.

5.1.4 Constrained Optimize Theory

J Primal Problem

For optimize problem in convex set X

argmin  f(x) P)
zeX

st. gi(z) <0, i=1,2,...,k (5.18)

hi(z)=0, j=12...1 (5.19)

which is called the primal problem for optimization.
The generalized Lagrange function for primal problem defined as

l

k
L(x,k,\) =f(x) + Kigi(T) + Aihi(x
( ) =f(x) ; gi(x) ;JJ() 520

wort. k>0, 1=12,...,k
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and we could further define a function of x:

f(x) constraint g, h satisfied
Op(x) = max L(z,k,\) = (5.21)
AR 20 +00  contraint unsatisfied

which means we can give the solution value of primal problem (P) simply by minimizing p(x), minimum

denoted p*

p* =minfp(x) =min max L(z,k,\) (5.22)
T T KK >0

O Dual Problem

Similar to primal problem, we can define a function of &, A:
Op(k,\) =min L(x, Kk, \) (5.23)
T

and similarly get the dual problem of primal, value denoted d*

d* = max 6p(k,\) = max minL(x,r,\) (5.24)
Ky A:ik>0 KA k>0
it is obvious that
d* = in £(z, kK, \)<mi L(z,k,\) = p* 5.25
nax min (z, K L_ngnﬁg§§§o (z,K,A) =p (5.25)

U Karush-Kuhn-Tucker Condition (KKT Condition)

KKT condition to allow d* = p* at (z*, K*, \*): in the case that
* f(x) and g;(z) are convex

* hj(x) in the form of affine function Az + b

* gi(x) are feasible constraints

then KKT & p* =d* = L(z*, k", \).

the KKT conditions are:
Ve L(z", k", ") =0

K;gi(z*) =0 i=1,2,...,k
gi(z*) <0 i=1,2,...,k (5.26)
K; >0 1=1,2,...k
Ai(z*) =0 j=1,2,...,1

Section 5.2 Algebratic Problem in Statistics

Considering the data structure and algorithm implement, many fundamental problems in statistics are basi-

cally algebratic problem, e.g.
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* Matrix multiplication:

y = Az, solve y (5.27)
 Linear equation solution:
n
b= Az = Z xia;, solve x (5.28)
i=1
* OLS solution:
B=(X'X)"'XY (5.29)

Generally speaking matrix A can be constructed in an arbitrary form, so an algorithm implementation needs

matrix composition so that we have a better form to handle.

5.2.1 Matrix Operation

* Inverse Matrix: Inverse matrix of A = [ay, ..., a,,] satisfies

ATA=AAT =T (5.30)

then Ax =b< x = A1

Or generally speaking, solve inverse matrix A~! = [a1, ..., ay,] is solving linear equations
AO[Z‘ =€ (5.31)
In the view of column space transfrom, A and A~! are mappings between space span{ey, ..., e, } and
span{ay,...,an},i.e.
Az
span{eq,...,en} = span{ay, ..., am} (5.32)
A-1b

* Unitary Matrix: Furthur for unitary A, denoted as () with QQ* = I, is an orthonormal transformation.

— |@| = 1 for rotation, |Q| = —1 for reflection.
- Ag==1

— Geometric structure preserved, e.g. inner product and norm.

* Projection:
— Basic definition of projector Px: idempotent matrix, project onto hyperplane X

P2 = Py (5.33)
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— Complementary projector I — Px: onto the complementary space of X
(I-P?=I-P (5.34)

— Orthogonal Projection: Projector such that Pv L (I — P)v. Theorem: Pv L (I — P)v & P* =P

Derivation: Projection of vector v on hyperplane X satisties (denoted as X p)

0=(Xp,Xp—v)=p"X*(Xp—v)=>p=(X*X)"'Xv= Xp=X(X"X) 'Xv=Pyov

(5.35)
More Properties of orthogonal projector see section 3.3.2 ~ page 82.
— Orthogonal projector onto vector q:
s a9
Po=q(¢'9) ¢ = (5.36)
llqll3

5.2.2 Projection and Least Square Problem

Recall: Linear model Y = X + ¢, basically solving linear equation Y = X 3, however generally Y ¢

span(X), then we use OLS method to reach an estimation of 3 :

B =argmin||Y — X2 (5.37)
B
where for || - || = £3-norm, X 3 is the projection of X 3 onto hyperplane X
XB=X(X*X)"'X*Y = HY = PxY (5.38)

For non-full rank A = X*X: use pseudoinverse At = (A*A)~1 A*
L1 Task of OLS (Linear Model): Solve B = (X*X)~"1X*Y, or equivalently solve X*X B = XY

Note: size of matrix denoted X = X
mXn

3

* Cholesky decomposition algorithm: computation complexity ~ mn? + %

1. Use Cholesky decomposition for X* X:
A*A=R‘R= R'‘R3=X'Y (5.39)
2. Solve & = arg{ R*{ = X*Y'}:
R*RB=X*Y =R'¢=RB=¢ (5.40)
3. Solve RB =£to getB

* QR decomposition algorithm: computation complexity ~ 2mn? — 2713
p g p p y 3

1. Use e.g. Householder Reflection algorithm to compute X = QR
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2. use the orthonormal property of Q:
X*XpB =X*Y = R*Q*QRB = R*RB = R*Q*Y = R = Q*Y (5.41)
3. Solve R = Q*Y to getB

+ SVD algorithm: computation complexity ~ 2mn? + 11n3

1. Compute SVDof X: X =UXV*
X*XB=XY = VRV B =VIU'Y = SV*3 =U*Y (5.42)
2. Solve B = VE~1U*Y to get 3

Algorithm comparison & trade-off: faster «~ less stable.

5.2.3 Gaussian LU Decomposition & Cholesky Decomposition

0 Gaussian Elimination Algorithm

Gaussian Elimination decomposes matrix A as lower triangular matrix x upper triangular matrix

* kK *
A=1L U =| ‘ (5.43)
mXxXm mXmmXm : : '.‘ '.‘ :

Conducted by continuously row transformation of A:

Lyp1...Lol\A=L"1'A=U (5.44)

where each L; corresponds to a gauss elimination operation such that [L;(L;—1 ... La L1 A)], t1myi = 05 with
[Li(Li—1... L2L1A)]1:i7: fixed. L; has the form as

Li =1 — lel, Li=10,. livtis o bt L= Aji/ Au (5.45)

Thenwehave L = Ly Lyt .. LY (U, withU = Ly, ... Lol A
If some pivot element (L;_1 ... L1 A);; = 0, use a row transformation P; such that (P;L;_; ... L1 A); # 0,

thus LU decomposition is expanded as
Ly 1Pp1...LaP,LiPPA=U (5.46)

Good properties of L; = I — [;e;: enable a quick algorithm implement of LU decomposition:

e Inverse of L;:

L' = -lief) ' =1+1e; (5.47)
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* Multiplication of L;lz
Lt Lk = (I + Le)) (I + lipaefyy) = T+ lief + Lipiefy (5.48)
* Interchangeability of F; and L; :
Lyn-1Pp—1...LoPaL1 Py = (Lyy—1 ... LaL1)(P1 ... P2P),  Li = Pp_y... P LiPLY ... Pl
(5.49)
where note that P; only exchange row/column k& and x > k, thus L; is still left triangular.

Thus get expression of LU decomposition PA = LU

,

P=PFP, ... P

L= (f/m_l L E2E1)71
PA=LU (5.50)

Li=Py 1...Pp1LiPiyq... P

U=Ln1Pn...LoPBL1PIA

Complexity of Gaussian Elimination:

m—1
flopsgg = Z
i=1 k

- 2
2(m —i+1) ~ gmi“ (5.51)
+1

(] Cholesky Decomposition

Hermitian positive-definite matrix A can LU decompose as
A=LU=R'R (5.52)

Algorithm: write A in partitioned matrix then conduct symmetric row/column transformation

1wl
A= (5.53)
w1 K
1 0f |1 0 1 wj
= (5.54)
wy Il [0 K—wwi| |0 I
=R{K1R; (5.55)
Note that K is still hermite positive-definite, we can repeat the above process
1 0
K = (5.56)
0 K —wiwj
1 0 01 O 0 10 0
=10 1 0f]|0 1 0 0 1 wj (5.57)
0 wp I] 1|0 0 K—-ww]—wws| |0 0 I

=R;K>R, (5.58)
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repeat untill K, = I: A= (R Ry—1...R1)* I(RnRm-1...R1) = R*R
Complexity of Cholesky Decomposition:

m m 1
flopsep =» Y 2(m—k+1)+1~ gm3 (5.59)
i=1 k=i

5.2.4 ()R Decomposition: Gram-Schmidt/Householder/Givens Method

@ R Decomposition: Orthogonal Triangularization of matrix A

A=Q R (5.60)

mXn mXnnXn

M1 T12 ... Tin
T22 e TQn
A= [al an} =QR = {ql qn} (5.61)

Every A4 € C™*" (m > n) has QR decomposition, specially:
mXxn
¢ Full decomposition exists
* Reduced decomposition with r;; > 0 is unique.

Here introduce 3 kinds of algorithm:

+ Gram-Schmidt Orthogonalization: ~ O(2mn?), sequentially orthogonalizes the columns of A, traditional

way
. 2 . .
* Householder Reflection: ~ O(2mn? — =n?), most commonly used, stable for ill & dense matrix
* Givens Rotation: ~ O(3mn? — n?3), used for sparse matrix, e.g. Hessenberg matrix

U (Classical) Gram-Schmidt Orthogonalization

Key idea: project a; onto span{qi, . .., qi_l}L as g;, with ¢ initialized as a1, projection coefficient r;; forms
R.

For each projection, the projector matrix is

i—1
Po=1-Y axdy (5.62)
k=1
expression of ¢; and r;;:
. q; a; iF ] P SCiThiGe @i — Yply Qedfa (5.63)
v . L . - i—1 :
las — 52 rhiawll i = = lai = Y= avagal

Note: Algorithm implementation of ¢; is (q<;) = Tr<ii — ¢i&rii — (¢>i)
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UJ Modified Gram-Schmidt Orthogonalization Algorithm

In equation 5.62 ~ page 153, projection of G-S orthogonalization for each a; is conducted ‘simultaneously’,

while modified G-S decomposition is conducted step by step.

i—1 i—1
Pi=1-) aqi= [0 —aab) (5.64)
k=1 k=1

Decomsition result are the same, but modified algorithm is more stable for numerical computation, avoid

problem of recursive g;.

> R. Code
Algorithm of CGS/MGS
1 |GS <- function(A,MGS=FALSE){
2 stopifnot(is.matrix(A))
3 m <- dim(A) [[1]]
4 n <- dim(A) [[2]]
5 v=matrix (0,nrow = m,ncol=m)
6 r=matrix(0,nrow = m,ncol=n)
7 g=matrix(0,nrow = m,ncol=m)
8 for(j in 1:m){
9 v[,j] <- AL,j]
10 if (j>1)4{
1 for(i in 1:(j-1)){
12 r[i,j] <- sum(ql,il*ifelse(MGS,v[,jl1,A[,j1))# A MGSHlv, CGS
B a
13 v[,jl <= v[,jl-rli,jl*ql,1il
14 1}
15 rlj,jl <= sqrt(sum(v[,jl1"2))
16 al,j] <= v[,j1/r[j,j]
17 }
18 return(list(q,r))
0 |}

[0 Householder Reflection

Key idea: Reflect A, ; onto e; € C™ ! as a vector of the same length || 4. i[ler € C™~ ! (later we

denote the I unit vector ¢; € C™ 1 = e,, ;11 ), reflector F; in Cm—+Dx(m=i+1) and auxiliary vector v;:>

vU*

Clm—tx(m=—i+l) 5 g — [ .01 — QW v =sgn(A; ;) || Aim,illem—it1,1 + Aimi (5.65)
5

“Here sgn() for reflecting toward —e1/e;.
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where sgn(-) corresponds to reflection onto é or —é. Reflector on A € C™*™:

Ii_1 O
Qi = (5.66)
0 F
and QR calculated by (note that F'2 = I,,,_; 1)
R=Qn...Q201A Q=0Q1Q2...Qpn (5.67)

Householder Reflection is more stable than Gram-Schimidt Orthogonalization
Error of Householder Reflection A = QR + E, residual is controlled by IE|l < || A||O(emachine)
Mainly caused by stability and accuracy of orthogonal matrix Q.

> R. Code

R. uses Householder Reflection to conduct () R decomposition.

1 |A.qr <= qr(A)
2 |Q <= qr.QCA.qr)
3 |R <= qr.R(A.qr)

O Givens Rotation

Key idea: use rotation

cosf = o
R cosf) —sinf| |xz; a7 + o3 a7 + a3 (5:68)
sinf cos6 xj 0 sinf — ]
x? + 22

act on A;_1.; ., so that A; ; = 0, each time use two rows to create 1 zero. Slow, used for special sparse
matrix.
5.2.5 Eigenvalue Decomposition

For square matrix A € C™*"™_ its eigenvector is the vector x; whose direction (subspace) is invariant under

transform operator A.

A:El' = )\lfL‘l (569)
Properties:
* Determinant and trace of A:
det(A) =[x tr(A)=> A (5.70)
i=1 i=1

« 1z, for special kinds of A: if span{g;} = C™, then (generally X is not orthogonal)

AX =XA=>A=XAX"! (5.71)
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Further for AA* = A* A (Normal Matrix ¥7EHiF%. Includes: hermitian A = A*, skew hermitian A =

—A*, unitary A~! = A*, circulant matrix®, and such A + kI), orthonormality of 2; — ¢;:

(gir qj) = dij (5.73)

Eigenvalue Decomposition/Spectrum Decomposition, X — Q:

AQ = QA = A=QAQ ! = QAQ* (5.74)

» Eigenvalue decomposition and positive definite matrix (Gershgorin circle thm.), A; falls in neighbourhood
of Qq;-

m

D(Niai) < Y ag] (5.75)

j=157

» Rayleigh quotient:

T Aqg
q*q

max R(A, ¢) = max A1 (5.76)

Eigenvactor Algorithm: Power method to find leading eigen pair.

for independent eigenvectors x; and an arbitrary vector £ = Y " | ¢;z;:

Akg = Ak i C;T; = i cl)\facl = Cl)\lf

=1 i=1

n k
¢ [N
§ 22 2| 5 ak 5.77
961+i:2 - (/\1> x] C1ATT1 (5.77)

Algorithm Basic Eigen Decomposition

1. pick a random ¢
: Ag;
2. compute normalized i - Qit1
| Agi |
3. repeat until ||g;i—1 — gi—2|| < Epreset

4. g; as the eigenvector, ¢/ Ag; ~ ¢! \1gi = \1

This algorithm requires |A1| > |X2| > ... for quick convergence.

3Circulant Matrix, or similarly Latin Square.

Cho €1 C2 C3
C3 Co C1 C2

C = (5.72)
C2 C3 Co C1

C1 C2 C3 Co

See section 14.2.2 ~page 369 for application details.
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5.2.6 SVD Decomposition
[l SVD (Singular Value Decomposition) Form:
* Reduced Form:
A=U 2V~ (5.78)
mxn mxn nxXnnxn
ot v}
* (o] U;
A:[al an}ZUEV Z[ul un] ‘ ) (5.79)
on| (v
* Full Form:
A=U x V* (5.80)
mXn mXm mxXn nNXn
01
02 vy
) v
A= {al an]ZUEV Z[ul Up ... Up . (5.81)
On
0 0 0 O0f (v
Existence and uniqueness of SVD:
» Every A € C™*"™ has SVD with {o;} unique
n
A=USV* =) v} (5.82)
i=1
* if A is squared, then U, V' determined
¢« if Ac R™ " then U,V € R
0 SVD Expression
U, V are eigenvectors of AA*, A* A respectively
Avs
ATA=VE2V* AA =US2U" wj= 2 o) =/ Aaa = aa (5.83)

gj
O Properties of SVD:

e rank of A: r =rk( A ) = # non-zero o;
mxn
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* Space of A:

R(A) = span{uq,...,u} C(A) = span{vy,..., v} N(A) = span{v,41,...,v,}  (5.84)

¢ Norm:

— Euclidean Norm: ||Alj2 = o1

— Frobenius Norm: ||Al|p = /> i_, 07

— Nuclear Norm: [|All. =37, 03
* Square matrix:

— if A = A*, then 0j = |AA‘j
— det(A) = [[Z, 0

* Low-rank Approximation of A using SVD:

k r
A = Zaiuiv;‘ =A- Z O'j’LLjU; (5.85)
i=1 j=k+1

is the ‘nearest’ rank k£ matrix from A

in [[A—-Zl2=[A—All2 = 5.86
jomin (14 ==z = JlA = Axllz = ok (5.86)

[0 When A is positive definite, SVD and ED get the same result.

A=QAQ* = A= Qsgn(N)|A|Q* = USQ* =USV* (5.87)

5.2.7 Schur Decomposition

Unitary Triangularization of matrix A (always exists in C™*™):
A= QTQ", Q unitary, T upper-triangular (5.88)

for A € R™*™: T is quasi-triangular, diag of 7" is Re(\;)

Section 5.3 Numeric Optimization Algorithm I

Algorithm Optimization in Statistics: e.g.

L]

MLE Maximazation, e.g. section 5.4.3 ~page 170.
¢ Clustering: minimizing within-cluster distance & maximizing between-cluster distance, see section 4.7 ~page 138
* Box-Cox A determining, see section 3.5.1 ~page 102.

* Machine Learning Model training, minimizing loss function, e.g. section 9.4.5 ~page 258.
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U Duality of Optimization and Rooting:

* Optimization: e.g. minimizing function g(x):
argmin g(z) = arg{Vg(z) = 0} (5.89)
* Rooting: extract root f(x) = 0:

arg{f(z) = 0} = argmin f(x)T f(z) (5.90)

1
More specific example: expand function to 2" as g(z) ~ §a:TA:(: — bz 4 ¢ (differnetiation of quadric z7 Ax

see section 4.1.2 ~page 118)

A+ AT

1
arg min §xTA;r —bx + ¢ = arg{ x = b} (5.91)

A i.e. for optmizing task arg min g(x), we can either minimizing g(z), or rooting f(x) = Vg(z) ‘

O Algorithm Design Aiming:
* Robustness: can be applied on various problems
» Accuracy: reach solution with great precision, at the same time insensitive to machine error
 Efficiency: computer time/storage not required
0 Iteration in Optimization Problem
Usually iteration is used in optmizing problem, by approximate solution x* step by step.

* Bracketing method means the solution z* is always within some iteration interval ®) = [Tleft, ¥, Tright],

use convergence condition m(I(Y)) < ¢ to obtain solution.

« Open method: Not necessarily 2* € I*), but convergence using d(x(t),x(t_l)) < ¢e. Usually faster than

bracketing, but less stable, and sensitive to initial value.
» Hybird Method: Mixture of bracketing and open according to iteration step feature
O Content
* Golden Section & Fibonacci Section Search: Bracketing method direct search for minimizer;
* Bisection Search: Bracketing method direct search for root

* Interpolation Method: Include either bracketing/open method, approximate function to obtain root/mini-

mizer

Regula Falsi: Bracketing linear interpolation for rooting

Secant Interpolation: Open linear interpolation for rooting

Parabolic Interpolation: Open parabolic interpolation for minimizing

Inverse Parabolic Interpolation (IQI): Open interpoation for rooting
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* Hybrid Method: Combination of bracketing method and open interpolation method for rooting. Include

Dekker’s and Brent’s, most used method

— Dekker’s Method: Hybrid of bisection and secant interpolation method for rooting

* Brent’s Method: Hybrid of bisection, secant interpolation and IQI for rooting

* Fixed Point Iteration Method: Open method for rooting, including univariate and multivariate linear case.

Univariate Fixed Point Iteration

Jacobi Method

Gauss Seidel Method

Successive Over-Relaxation Method

* Nelder-Mead Method/Simplex Method: Open method for minimizer based on simplex iteration
0] Default Methods in R.

* optim(VEC_OF_INI_VAR,FUN): Nelder-Mead Simplex search method, use method=c('Nelder-Mead'

b

'BFGS', 'L-BFGS-B','CG','SANN', 'Brent') to choose different methods
* uniroot (FUN,INTERVAL): Brent’s Method;

* optimize (FUN,INTERVAL): Golden Sectiont+Parabolic Interpolation.

5.3.1 Golden Section/Fibonacci Section Search

Problem: minimizing univariate function g(z), within a pre-estimated interval [1:50), xio)]. For f that is

undiffernetiable/complicated to compute, this method is often used.

Basic idea: within a unimodal interval 1(©) = [x§°>, xio)] of f(z), pick two symmetric points xgo), iL':())O) in I

so that

(0)

Ty — :rgl) = xflo) — xéo) =(1- r(o))(xio) - x(lo)) rt) > 1/2 (5.92)

then extreme point should falls in one of [xgt), Iét)] or [xét), xflt)], iteration the interval by comparing g(z2)

and g(z3): use one of them as the next interval. And for less computation, we hope that one of g(xgt)) of g(mz(,f))

can be used in step ¢ + 1 as g(a:gtﬂ)) or g(xétﬂ)), ie.
itg(ay) > g(al) 2V, af™ G = 1) 2 2] (5.93)
ifg(ry)) < gla)) : [V 2y 2] = )2 ) (5.94)

also use equation 5.92 ~ page 160, we have (here use g(:ngt)) > g(xgt)) case for derivation)

e e Y (g o
wz(f) . xgt) {L‘Elt-H) . wgt—i-l) xflt) . xét) 74(15) :

Algorithm Golden Section/Fibonacci Section Search
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1. Initialize 1(*) = [xgo),xflo)] with z* € I°
2. For each step z(*):
(a) Calculate r(*), and then g(:cgt)), g(azgt))

(b) compare g(xg)) and g(:cét) ), and update interval

ifg(xét)) > g(azét)) : [:cgtJrl),xgH),xiHl)] = [xét),xét),xit)] (5.96)
itg(zd)) < g(@) o™, 2§, 2] = ), 2, 2] (5.97)

3. Repeat until convergence m (I (t)) <e

Choice of r®): for algorithm robustness and avoid ill sequence, we will usually use some special (*):

« Golden Section Search: use r() = = const, such 7 should satisfies

po o VA1 L e (5.98)
r 2 0]
Convergence at
m(ID) = r'm(IV) < ¢ (5.99)
Fn

« Fibonacci Section Search: choose for ¢t = 0 as r(9) = , where {F}, } is Fibonacci sequence, then

n

(0) :Fz;l (5.100)

1-7O R,
M — — 2 5.101

' rO T Fyy G100
1—r®  F,_
(2 = — -n-3

r 5 T (5.102)

: (5.103)

® :F;—t—l (5.104)

n—t
(5.105)
r =7 =3 (the last step of iteration) (5.106)
3

To determine the preset n, first use convergence condition

700
m(1"=2) ﬁT(i)m(I(o)) = Em(l(o)) <e= fn = m(5 ) (5.107)
- F, m(I) '
1=0 Fr1 <
£
(t) _ antfl

then conduct iteration, using r\*) = .
F, n—t
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Basically the two methods have similar background, noticing that the eigen equation of Fibonacci sequence

_ F,_ V-1 1
2 =2 +1,and lim,,_, ;nl == 54

Can be proven: Golden section need one more iteration call than Fibonacci section:

1S

nGs = Nrip + 1 (5.109)

1
Convergence order o = 1, rate ¢ = g

5.3.2 Bisection Search Method

Problem: rooting univariate function f(x), with a pre-estimated interval 1(®) = [xgo) , $go)] , with f (l’go)) f (xgo)) <

Idea: Intermediate value thm.: for continuous f : [a,b] — R, f(a)f(b) < 0= Jz*,s.t.f(x*) = 0.

Algorithm Bisection Search

1. Initialize 1(®) = [acgo),xgo)] satisfying f(mgo))f(azgo)) <0
2. In each iteration z(*):
(a) compute midpoint function value
1
9= (o +24") (5.110)
(b) update interval according sign of f (:c%)):

® @) (t) (t)
Ty, T |, T T ) <0
I(t+1) _ [.Tgt+1),xgt+l)] = [ 1 ] f( 1 )f( ) (5111)

28,2, fa) Py <o

3. Repeat until convergence m (1)) < ¢

1
Convergence order = 1, rate ¢ = 5

5.3.3 Interpolation Methods: Linear/Quadratic/Lagrange Interpolation

Interpolation is an approximation to function, thus can get approximation to solution. Interpolation can be

used for both minimizing or root finding.

[J Regula Falsi/Linear Interpolation (Bracketing) for Root Finding:

4General Formula of Fibonacci sequence:

(t0r - -5r) (5.108)
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Idea of regula falsi linear interpolation: at root x* of f(x):

f(z) = df (r —x¥) (5.112)

dz | .

Iterate by repeatedly constructing linear interpolation/secant and use the root as an approximation to x*.

Algorithm Regula Falsi Interpolation

1. Tnitialize interval I© = [z 2] with £(2{”)#(={") < 0

2. In each iteration z(¥):

(a) Compute linear interpolation of (xgt), f (atgt))), (x5, f (xzt )), and compute the root of the straight

line

®) ¢(.(2) @) £,.(t)
20 — 11 flay') —ay flay”) (5.113)

’ Fasy — ptt

compute f (x&t))

(b) update interval according to sign of f (x$t>):

) () (t) (t)
7, 1], T zr’) <0
T+ — [x§t+1)7x;t+1)] — 1 L @) f ) (5.114)

2P 2P, p@ Py <o

3. Repeat until convergence m(I) < ¢

Note: for enough steps of iteration ¢, the iteration would be short enough such that sgn(f”(x)) = const, in

which case one of xgt) or xét) would remain fixed for ¢ > t§.5

f//(x*)
2f"(x¥)

Convergence order o = 1, rate ¢ = — (x* — Zfixeq). Note that sign dependency of xfyeq on f” ()
and f’(x) ensures ¢ > 0.
0 Secant Interpolation/Linear Interpolation (Open) for Root Finding

Instead of limiting x* € [xgt),xét)] (bracketing) by ensuring f (xgt)) f (a:gt)) < 0, we can also remove the

restrict, i.e. just use the latest two points to construct secant.

Algorithm Secant Interpolation

1. Initialize two points 2(—1), z(%) (interval not necessarily include potential root *)
2. In each iteration z(*):

(a) Compute linear interpolation of (z(*~1, f(z(#=1Y)) (z®) f(2®))

(b) Use the root to update z(t+1):

(t+1) _ a?(t—l)f(l»(t)) _ IL‘(t)f(;L‘(t_l))
T J@0) — @)

. (5.115)

For f'(x) f'(z) > 0, x> fixed; f(z) f'(x) < 0, 21 fixed.
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3. Repeat until convergence, .e.g. [z —z(=D| < ¢

Comment: For interval small enough such that sgn( f”(z)) = const and f(z®) f(z(*~1)) < 0, this method

might goes back to bracketing linear interpolation.
Convergence order o ~ 1.618.
(] Parabolic Interpolation for Minimizing

Idea of parabolic interpolation: at extreme point z*, function f has taylor series
g@) ~g@) +5 5| (@—a")? (5.116)

2

. . , 1
we can iteration by repeatedly construct parabola to approximate f(z*) + 3 da? (x — 2*)? and use the
x *
exterme point of the parabola. v

Algorithm Parabolic Interpolation

1. First initialize three point (xgo), :cgo) , xéo)),

2. In each iteration z(*):
(a) Use (xgt), azg), x:(gt)) to compute corresponding f (), then use quadric fitting to obtain parabola I'(*)
1 1 1
) @ (t+1) xét—i— )’ xgt+ ))

(b) Replace max{xgt), Ty, Ty )} by extreme point of T'!) to update as (z; ",

3. Repeat until convergence.

Convergence order o ~ 1.3247.

] Lagrange Polynomial Interpolation

Lagrange Polynomial is a function base set: Given n + 1 point (zo,y0), .- -, (Zn,yn) (n > 1), Lagrange
polynomial:
Lo -y
ti= 1] Lo i=0,1,....,n (5.117)
T T X
J=Lj#

And Lagrange interpolation function: L(z) = )", yil;
n = 1 for linear interpolation, n = 2 for parabolic interpolation.
U] Inverse Parabolic Interpolation (IQI): Open interpoation for rooting

1 . . . .
Note that general parabolay = §aac2 +bx + ¢ might have 0 or 2 root simultaneously, thus use inverse quadric

. 1, — . .
function x = 2% + by + ¢, i.e. inverse quadric interpolation.

Algorithm [Inverse Parabolic Interpolation

1. First initialize three point c = (:1:(_2),3:(_1), x(o))

2. In each iteration z(V):
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(a) Use C®) = ( (t-2) a;g l) gt)) to compute IQI function, and get root

202 (@) f(a®)

. (5.118)
cyclez<t%<t1),x(t) [f(l‘(tim) - f(x(til))] [f(‘r(tiZ)) o f(m(t))]
(b) Update points
Cot+1) _ (x(tfl)vx(t),x(ﬂrl)) _ (x(tfl)’x(t)ﬁ) (5.119)

3. Repeat until convergence |z(Y) — (1| < ¢

5.3.4 Hybrid Method: Dekker’s/Brent’s

U Dekker’s Method
Dekker’s method is a hybrid of open linear interpolation and bisection, in each step, use one of interpola-

tion/bisection according to iteration condition to achieve both quick convergence and stability.

Algorithm Dekker's Method

1. Initialize three point a©® . pO p(=1) = ¢ where interval bteween a?), b(®) should include potential root
i*,ie f(aD)f(®) <0

2. In each iteration z(V):

(@) a®, b is labelled as follows: label ensure |f(a(®)| > |£(b®)], thus b*) is the estimate of root,

while a(t) is the ‘contrapoint’ of b(*)

(b) compute root s of linear interpolation of (a*), f(a®)), (b®, f(b()), and compare with midpoint

a®) 1+ p®
m= ———
2
_ a(t)f( t ) f( ))’ se [m, b(t)] (01‘ [b(t),m])
D) _ ()( b® 2) f(a®) (5.120)
m:—gga s ¢ [m, 5] (or ), m))

(¢) Then update a**1) as one of a(® and b(*), such that f(a(t+1)) f(b®)) < 0, then relabel a1, b(®) to
a1 (41 according to | f(atHD)| > | £(b¢HD))

3. Repeat until convergence [b®) — b= | < ¢

Comment: In step 3, the choice between bisection and open interpolation take advantage of quick conver-
gence of open method, also ensure stability by using bisection for ill secant root s. However for interval small
enough, this method might also goes back to bracketing linear interpolation, then () convergence very slow.

[ Brent’s Method

Brent’s Method is an improvement of Dekker’s Method:
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« Avoid convergence problem of b(*) in the case of bracketing linear interpolation by checking |[b(*) —p(t—1)| >

0 before linear interpolation, otherwise use bisection
« Further adding IQI interpolation if a(*), 5®), b(t=1) are distinct for quicker convergence, root for IQI:

/ 3 a® f(b®) (1)

T i e @) = SO [7(a) 70D o120
> R. Code
it uniroot ()
5.3.5 Fixed Point Iteration: Univariate
Idea: Contraction mapping thm.: for function f : X — X satisfying
d(f(z), f(y)) < Bd(z,y), B <1 (5.122)
then such f has a unique fixed point x* such that f(z*) = z*, and convergence is ensured:
(7 (@), 2") < {7 d( o), (5123)

For univariate function, requires | f'(x)| < 1(at least at = near =*)
To minimize f(z), i.e. find root of f'(z) = g(z), i.e. find fixed point of G(x) = af'(x) + x = z, requires
G ()] = |af"(2) +1] < 1.

Note: We can also use inverse function of af’(x) + x, and further use G (x) = rG(z) + (1 — r)z to find

fixed point.
Iteration: use 2* = (™ = GI"}(z) = G(G(G(...G(G(x))...))), until |z — z(»~D| < ¢
| ——
n
1
Basically, fixed point iteration is the same as parallel chord method: use the root of iy — g(z(V)) = ——(z —
o
z®)) asg z(+1),
Convergence order is v in G(z) = af'(x),
5.3.6 Fixed Point Iteration: Multivariate Linear
For solution of Az = b using fixed point iteration, where AA* = A* A(normal matrix), requires:
p(A) =max |\ < 1 (5.124)
* Jacobi Method: Decompose A = D + E, where D is diagonal part
a1l a2 ... Qinp all 0 e 0 0 a2 ... Qinp
a1 a2 ... Qa2n 0 asy ... 0 asy 0 ... Aon

A= _|=D+tE=y A+ | G125

apl Gp2 ... Gnp 0 0 ... apn apl Qp2 ... O
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Then fixed point iteration: using (D + E)z = b = (1 = D=1(b — Ez(®)
CEONENE I BV o PR
T = aT’z’ b; Za,]mj (5.126)
JF
* Gauss-Seidel Method: Decompose A = L + U

aill 0 e 0 0 ai19 A1n

as] as2 0 0 0 a2n
=L+U (5.127)

Gpl  Gp2 Qnn 0 0 0
Then fixed point iteration: using (L + U)x = b = Lz**V = (b — Uz®), iteration:
(e _ 1 Sy L) NS, 0
t+1 t+1 ¢
j=1 j=i+1
* Successive Over-Relaxation Method (SOR Method): Decompose A = D + L + U
ail 0 N 0 0 0 ... 0 0 a2 A1n
0 aszy ... 0 asy 0 ... 0 0 0 ag
A=D+L+U=| + + "l (5.129)
nxmn - -
0 0 Ann anl Gpa ... O o 0 ... 0

Then fixed point iteration: using w(D + L+ U)z = wb = (D+wL)x = wb— [wU + (w — 1)D])x, move
non-diagonal elements to R.H.S.
w e (0,2)

1—1 n
2 = (1wl + 2 b =Y aga = 3 aal? | (5.130)
j=1

s
w j=i+1

Comment: SOR iteration step is the w weighted average of () and Gauss-Seidel iteration.

5.3.7 Nelder-Mead Method

For multivariate function g(x), with z € R", usually use Nelder-Mead Method, or Simplex Search Method.
Simplex is a generalization of triangle/tetrahedron to any arbitrary dimension, and Nelder-Mead method is con-

ducted by iterating simplex.

Algorithm Nelder-Mead Method

1. First initialize simplex C©) by preset pg and X

o0 — {1’80),11,‘50), e x%o)},x(()o) = Do, 3350) = po + A\i€i

(5.131)

2. In each iteration z(V):
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(a) First sort {1‘ } according to g(x z(t))

g(z(g) < gl <. < g(all) (5.132)

: (n)
(b) Compute centroid of Bc(t) = { (0 ) (1), . ,:c(n_l)}

1S,
a:gf) = ;x(i) (5.133)
And compute the reflection point of xgi)):
2 =2 4 (@) — wEQ)) (5.134)

(c) Compute gét)) g(z Eé))) Et) =9 EZ) 1) 98?) = g(wEQ)) W = g(«\") and compare:
. gﬁt) E )): reflection point x,(ﬂt) is a good trial for minimizing, further try a farther point
o) = a) + 2 - 2) (5.135)
then iteration according to g(t)
) .t (t) (t) (t) ()
(1) _ g (D) (D) iy ) 1B Ty By Tar ks a0 < v
R R e el U N
{1:(0)7x(1)7' 73;(”_1)7'1'7“ }7 927~ Z gr
(5.136)
EO)) <gr< g((fl)_l): better simplex but not necessarily the best, just use
CUFD = {af ™) 2D (D) = {ng))),ﬂﬂg?p e ,9552—1)71’@} (5.137)
. QE:L) 1 < gﬁt): xﬁt) might not optmize the simplex, conduct shrinkage:
( ) (t) (t) ® 0 (t)
xgt) _ +0.5(z m(n)), Iin—1) S 9" < I(n) (5.138)
() 0.5(90() QCE;)))’ 9((7?) Sgr(t)

(t)

if ggt) < g((;)), suggesting a successful shrinkage, use g5’ for iteration

o+ — {x(()Hl),xgtH), . xﬁf“)} = {mgg)), :cgtl)), A Q?EQ,D x(t)}, g5’ < géi)) (5.139)
otherwise we have to update the whole simplex:
ot =) 20T = 50 4 2( 2\ — ) (5.140)
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5.3.8 Coordinate Descent Method*

Section 5.4 Numeric Optimization Algorithm II

To minimize some arbitrary function f(z), the idea of gradient iteration method is to update z(*) based on

(minus) gradient —V f(z), with some modification on direction p(¥) = T'(—V f(z)) and step length a®
2D =20 4 o7 (9 f(2)) = 2 + alp® (5.141)

« Modifying Direction p®:

— Gradient Descent: pt) = —V f ( )
— Newton-Raphson Method: use Hessian matrix p() = — [H(z(!))] vy (z®)

— Fisher Scoring Method' for statistics problem, use fisher information [/ (x(t)) = —Fy (H (x(t))),
p =1 (20) 7 v (20)
()

— Quasi-Newton Method: usually use secant condition to approximate Hessian HO = MO or g1 =

B®) with various updating SR-1/DFP/BFGS/L-BFGS/Broyden Class

— Steepest Descent: general form based on various norm choice.

— Stochastic Gradient Descent (SGD): modification for large sample

— Conjugate Gradient Method: Use the ‘perpendicular’ property of conjugate vector for quick updating
of pi.

« Modifying Step-Length / Learning Rate o(*):

Fixed step-length: a® = o

o}
on n(t)
Exact line search: o(t) = arg min f ( ) 4+ aplt ))

Backtracking line search: a(t) =

Trust Region Method: use Hessian matrix H (x(t)), but restrict direction & step-length with trust

region Ha(t)p(t)H < A®

5.4.1 Gradient Descent Method

The simplest choice for T'(-) is identity p() = —V f ( ) because negative gradient direction is the (local)

descent direction. Iteration:
LD — ) _ Vf( ) (5.142)

Note: for such gradient method, step-length should be carefully specified, use proper fixed step-length or

backtracking/exact line search.

Convergence order agony = 1.
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5.4.2 Newton-Raphson Method

Idea: For minimizing problem z* = argmin f(z)°, using iteration method with an initial value z(¥), we
hope to find iteration step z(**1) — 2(!) such that 2(**1) can approach z* quickly. We can try to use the taylor

series at z(Y) to O(z2) and try the minimizer of the quadric function:

F@) =~ Fuo @) = F@O) + (@ = 2OV f@lo + 5@ 20TV f@)lo (-2 (5143

minimizer 0f(@) =0:
ox

o _g f@)| +VVi@)| (@—2®)=0= 2t 0 = (vvf(x))fl Vf(z) (5.144)
ox x(t) z(t) 2(t) ’
Use the above solution as the iteration step:

2D — ) _ {H@)}‘ Vf(z®) (5.145)

2
where H) is the Hessian matrix H®) = o f@)
8$8$T 2t

Convergence order aeony = 2.
[l Main difficulties of Newton-Raphson method:
« Calculation of H(f(x®))~1, a task of second derivative + marix inverse.

* As an open method, Newton-Raphson method is unstable and sensitive to initial value: more initial trials

suggested

* Positive/Negative Definition of Hessian

920aT is not guarenteed, while positive/negative definition would
x0x

lead to local minimum/maximum respectively, i.e. descent not guarenteed.

5.4.3 Fisher’s Scoring Method in MLE

For MLE optmizing problem in statistics using Newton-Raphson Method, we can use properties of log-
likelihood 1(6; ) to help overcome the difficulty of calculating H~!. This method is called Fisher’s Scoring
Method/Iteratively Re-weighted Least Squares (IRLS).

Notation: for simplication, the following part uses V f(z) := f/(z) (a vector), VV f(x) := f”(x) (a matrix)
U MLE Maxmizing < minus of MLE Minimizing

MLE maximizing problem:

0" = argmax ((6; &) = arg max lan(xZ-; 0) (5.146)

Ty

Newton-Raphson iteration gives

0D = 90— 1(0;.2) 1 (0V;.0) G.147)

Here uses different notation from previous part to avoid confusion of g(z) as link function.
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Note that here I'(#) is Score Function (equation 2.78 ~ page 48), and [ (0) is relative to Fisher Information
(equation 2.89 ~ page 48).”
Note that Fisher Information is the expectation of —(I”(6)) := J(#), the idea of Fisher scoring method is

the estimate " () using Fisher information:

00D = 9O — 10, 2) " (0; ) — 00D = 00 1 1(60) 17 (00); ) (5.150)

How does Fisher Scoring improve Newton-Raphson method?

* Note that [(0; Z) = > ", 1(0; ;) = 1"(0; %) = >, I"(0; x;), need much more computation for large n,
while Fisher Information is a reasonable ‘average’ of I” (6, ;) and total Information is just the sum of each
I;

0°1(0; €)

1) = n1i(6) = nEe(“g7)

(5.151)

* Fisher Information 7(0) is always positive definite, thus improve stability.
/
y'0 —b(0)

[0 More Specific Case: Scaled Exponential Family f(y; 5, ®) = exp < @)
a

+ c(y; ¢)>

where 0 is the canonical parameter, declaring location.

This form of exponential family distribution posses some good properties (when approaching expectation
and variance), and is one of the basic distribution assumption in Generalized Linear Model, which is an important
MLE task. Detail about GLM and scaled exponential family see section 3.7 ~page 110.

Further note that here we demand 6 as canonical parameter, which is not necessarily the parameter ;1 we use.
Assume 6 as function of i as 6 = g(u).}

Properties:

* Log-likelihood:

10, ¢1y) = W + c(y; @) (5.152)
* Expectation: equation 3.237 ~page 111
E(Y) =10V (9) (5.153)
* Variance: equation 3.238 ~page 111
var(Y) = a(¢)b" () (5.154)

"Detail see section 2.2.3 ~page 45 & section 2.2.4 ~ page 47, page 47

¢ Score Function .

COnf(F0)  0l0;F) <= 0ln f(z:;0)
=%~ 6 X o9 (5.148)

S(6; %)

 Fisher Information
I1(0) =E

61nf(f;9)3lnf(f;9)} :E{_w} (5.149)

a0 06T 060067

8Here use notation in GLM, where § = 1 = g(u).
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* Score function:

S(0;y) = ae' =5 (5.155)
S(iy) = gédiif )_1 _;”(Ef)(“ Dt (5.156)

* Observed Information J(6) or J(u):

gy V(0
T6) ==1'0) = 5 (5.157)
2
T =~ gty = ST 5+ (5 ope) Wlale) =) (5159
* Fisher Information:

1(6) = E(J(0)) = Z/(i)) (5.159)
Tl0) = () = 2o 500 00 325 (5.160)

L] Fisher Scoring and GLM: Iterative Re-weighted Least Square (IRLS)
Recall in GLM in section 3.7 ~page 110

pi ~ g~ (i) or g(ui) ~ '3 (5.161)
where minimizing task is
B = argmale(p;xi, yi) = argmaxz 1(B; 2, yi) (5.162)
where I(p; z,y) satisfies y; ~ f(uy;, = g(T(2}3)). Use E(Y) = /() we have
p=EY)=g"(n) =g ('B) =0 (5.163)

Note that in GLM model we should have chosen canonical link equation 3.250 ~ page 112 such that g=! = ¥/,
then

O=n=a'B=g(u) e~ g (0) =g '(n) =g ' (a'B) =p=E) (5.164)

i.e. we could get: (Here Y and X for sample matrix notation ¢ and X)

_0l(B) _ XTY - XTg 1 (XB)

S(BY) = a9 = a(d) (5.165)
B 1 Og " dg _ L /
I1(B) = (@) %b (0)W = a(gi))X WX (5.166)

_ dg~1(0) _wvar(Y)

W) :=b') 9 lo_xs  al9)

(5.167)
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Then we can use above result to modify Newton-Raphson Algorithm as

AU = g1 4 1(BM)718(B) = B + (X'WI X)X (Y — g1 (XBD)) (5.168)

where
W =8"(©)|_x 50 (5.169)
g7 (&) ='(€) (5.170)

Further comment: iteration can be written

D — (x'w® x)"Lx' W ® (Xﬁ(t) WOy - g_l(XB(t)))> (5.171)

where Z = XB® + WY — g~ 1(XB®)) can be expressed as the taylor series of Z = g(Y) at Y =
g 1 (XB):

Z=g(Y)~g(g~ (XB)) + gz(Y—gl(Xﬁ)) (5.172)
=XB+W (Y —g 1 (XD)) (5.173)

i.e. each step of iteration is a weighted generalized linear regression Z ~ g(Y') ~ X3
[l Useful choise of General Linear Model and MLE iteration

Note: for conciseness, the following part would use the most commonly used parameter, and canonical
variable § = n = 2/f3

Regression data: (y;,z;),i=1,2,...,n

» Simple Linear Regression: Normal Distribution

1.2 2
2 N yp—op” oyt 1 2
Y; ~ N(zif,0%) flyp,o )—CXP{UQ—M—zln(QWU )} (5.174)
— Link function:
gy =y e g (@B =28 (5.175)
— Canonical variable §# = /8 = p and its function
Lo 2 2
b(0) = 59 a(c®) =0 (5.176)
E(Y)=0b(0) =6 (5.177)
var(Y) = a(p)b"(0) = o? (5.178)

— Log-likelihood:

1
1(B,0%y,x) = < ~ 5373 In(27c?) (5.179)
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— Raphson Iteration:
on 1
% = 2 el 219) (5.180)
%%T = 22:@ (5.181)
iteration step:
A = g0 (X' X)X (Y — XP) (5.182)
— Fisher’ Scoring Iteration:
W(B) =b"(n) = Iy (5.183)
1
1 XWX ==X'X 5.184
() =i X'W (5.184)
iteration step: the same as G-R method
B = B0 4 (X'X) T X' (Y - XB) (5.185)

* Logistic Regression: Binomial Distribution

Y; ~ B(no, logistic(/8))  f(y;no, ™) = exp {yln

— Link function:
1
9ly) = In 2 = logit(y) & g7} ('6) = {5 = logistic(s'5)
— Canonical variable = 2’3 = logit(r)
1
b(0) =noln(l —7) =ng lnm a(p) =1
1
—_ / —_— —_—
E(Y) =b (9) = noil T 6_9 nom
—0
e
var(Y) = a(p)b”(0) = ng A5 =nom(l — )

Log-likelihood:

I(no, By, ) = yz’B +noIn(l — g~ (2/B)) + In <nyo>

Raphson Iteration:

n

88; = Z i (yi — nologistic(z;3))
i=1
U o va 2nog (@B (1 - g~ («'8))
9p0pT — =" e n )2 ’
iteration step:
al \ "ol
—pg® _ (= il
/B(t—f—l) B <aﬁaﬁT> aﬁ 50

(=) 4 (") ]

(5.186)

(5.187)

(5.188)

(5.189)

(5.190)

(5.191)

(5.192)

(5.193)

(5.194)
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— Fisher’s Scoring Iteration:

W(E) = "2 — g (X)L - g7 (X)) (5.195)
I(B) = X'WX = X'diag{nog~ ' (z}8)(1 — g («}8))} X (5.196)
« Poisson Regression: Poisson Distribution
Yi~ P(e™?)  f(y;A) = exp{ylnA — A~ In(y))} (5.197)
— Link function:

9(y) =Iny < g7 '(a'B) = ¢ (5.198)

— Canonical variable § = 2/ = In \
o) =x=¢e  a(p) =1 (5.199)
E(Y)=b(8)=¢ =\ (5.200)
var(Y) = a(¢)b"(8) = e = X (5.201)

5.4.4 Linear Modification to Step Length

In minimizing methods, the key idea is usually approximate original g(z) with some §(z), and the idea of
restricting step length is to avoid severe deviation of g from g, the most direct method is to adjust step length on

a given direction:

we should choose proper scale of a*) adapted to the craggedness of g(x) for better convergence. In machine

learning, a(*) also refers to learning rate.

« Fixed step-length: Fix o) = o (usually o = 1)

 Backtracking: Starting from e.g. oz(()t) = 1 and calculate corresponding g (x(t) +a

WO 2umit (40 a0 <5 (), i

®)

%

p(t)> , update agzl =

) — @0 (t) (®),() (*)
Q max on s.t.g (x +a;'p ) <g (m ) (5.203)
» Exact line search:

alt) = argmin g (a:(t) + ozp(t)> (5.204)

«

Special case for quadric form

Properties:




176 CHAPTER 5. %ttt 5 544304 vincent19

— For exact line search, contiguous direction step are perpendicular, i.e.

Of (z® + ap®)
Jda

=0= V| o p® = ptth) L p) (5.205)

a®)

1
— o9 in special case for quadric form f (x) = 5:1;TAJ: — b7z + ¢, denote ‘residual’ r®) = Az(®) —p =

Vf (x(t))
g in £ (20 p'(Az —b) - pTrl® 5.206
for p=—V f() =—p(t) r(t)Tr(t)
OT 470 (5.207)

More general modification based on quadric form see section 5.4.7 ~page 179, Trust Region Method.

5.4.5 Quasi Newton Method

One of the main difficulty of Newton-Raphson method is calculation of Hessian H (l'(t)) (as well as its
. N 71
inverse). We can use some estimation method for M) = H®), for equivalently for B() = [H (t)} ?

Updating:
—1
20D — @) @) [ M(t)} i (xos)) —2® — OBV (x@)) (5.208)

J Discrete Newton Method
Numerical finite differential for M ®):

) -5 @)

ij )
h!

(5.209)

This basic numeric method for Hessian has heavy calculation burden, and cannot ensure positive definition

of Hessian, Not recommended.
(] Quasi Newton Method: SR1, DFP, BFGS, L-BFGS, Broyden Class

Instead of ‘recalculating’ M+ (or B#*1) in each step, we can ‘update’ M (+1) based on known M),

D) O v i+ 7 ) And Update of z(*t1) as

—1
L(E42) (1) _ { M(t+1)} v ft+D) (5.210)

Calculation of second derivative is avoided. Note that in M (t+1), in total n2 elements are needed, thus we

usually has some basic assumptions/conditions for M (**1) which should be inherited in iteration

- Symmetry:

MDD — (M(t+1))T o plt+l) — (B(t+1))T (5.211)

Notation different from lecture note. Here always use H for Hessian H = VV f
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- Secant Condition/Quasi-Newton Condition:

Define

Yy = vt _ g ) s = L) _ () (5.212)

Secant condition:
gy = M0 o ) = glt+1)y (1) (5.213)
- Curvature Condition/Strong Convex Condition (on function property)

<S(t)7y(t)> >£>0 (5.214)

With these two constraint, degree of freedom of M **1 is reduced to

n(n —1)
2

In the following part in this subsubsection, we will usually ignore the superscipt -(£) or use subscript

-t if necessary.

* SR-1 Method/Davidon Update: Rank-1 updated
(y — Mys)(y — Myys)"
(y — M(t)S)TS

(s = Bwyy)(s — Buyy
(s = Buyyy)ly

M1y =My +

(5.215)

)T

Note: SR-1 update cannot guarenteed the positive definition of M 1) and B(;1). But this method can be

used together with Trust Region method to avoid the disadvantage.
* DFP Method & BFGS Method:

Idea: We want to pick the Hessian M nearest to M(t), with constraints above, i.e.

M1y = argj\znin IM — Mgyl st.M=M" y=Ms (5.217)

where norm || - || can take different form, each giving a corresponding quasi-Newton update. Here we take

weighted frobenius norm

[Alw = [WPAW 2| y=Ws (5.218)

Note: Here we take any W with secant condition for a scale-invariant norm (because W would also looks

like some ‘hessian’!?)

'°One of possible form of W can take

1
w :/ VVf (2@ +7s) dr (5.219)
0
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Solution'!:
T T
ys SY vy
M =(71- My | T — — = 5.225
() < yT ) (t)( yTS) T yTs (5:229)
) . ) 7 \—1 1 A tupT AL
And inverse using Sherman-Morrison formula (A +u v) =A=' — —————— (Note: tough calcu-
1+vTA 1y
lation, haven’t tried) is the DFP updating:
B(t)nyB(t) ssT
By.py=M;! =B,y —2—= 4 27 (DFP)
(t+1) (t+1) ) yTB(t)y yTs
* Similarly, using dual minimizing problem
B4y = argmin | B — By |lw—  st.B=B", s=By (5.226)
B
Solution:
T T
sy yYs ss
B =(l——=|Bpl|l—-"F —_— BFGS
(++1) ( yTS> (1 < yTs) + T (BFGS)
Also we can inverse to get estimation of hessian in BFGS updating:
M(t)SSTM(t) ny
M1y = Mgy — sTM(t)s + TS (5.227)
Note that our final goal is to evaluate B(; 1) to get step direction
Pi+1) = — Busy Vs (5.228)
( T
(s — B(t)y)(s — Buyy)
By + SR1
® G~ Bayy)Ty (SR1)
Bwyyy B( ) ss”
Bii1) =4 By — -0 + 2 DFP (5.229)
(t+1) () TB(t)y yT; . ( )
sy ys ss
I-— B I — = ——  (BFGS
\( yTS) m( yTS> TS ( )
"Solution of minimizing problem using Lagrange multiplier: Note that weighted frobenius norm is
IM — M3 = tr (W_I/Q(M — M)W (M — M(t))W_1/2> (5.220)
with constraints M = M7,y = Ms, giveny = Ws, M, &) =M (7,;). Minimizing Lagrange function taken as
=(M,\A) = tr (W’l/Q(M — M)W (M — M(t))W’lm) — AT (Ms — y) — dtr (A(M - MT)) (5.221)
51\54 =2W ' (H — Hy)) "W —4xsT —4(AT —A) =0
argminZ(M, A\, A) = ;34: =Ms—y=0 (5.222)
8’_‘ _ T _
EYTN =M -M=0
Solve: fisrt eliminate A — AT into AsT — sAT, then eliminate As”, finally eliminate sAT, solution:
M( )S i STM( )SyT STM( )
Mip1y =My + 7@/ st y' + e < yTS;TS - yTst (5.223)

T T
ys sy vy
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Comment: DFP updating and BFGS updating can both update (M ¢+1) B from (M®), B®), with

n(n —
2

multiple choice of updating, in which DFP and BFGS get such update from minimizing weight norm. In practical

symmetry condition and secant condition. But such updating has dof = > 0, thus we can have

terms, BFGS is usually more suitable than DFP in general optimization problem.

A guess from their minimizing problem: BFGS is more ‘direct’ by minimizing || B — B®)|y;,—1, without the

inverse of minimizer matrix as in DFP.

0 More methods based on DFP and BFGS:

* Broyden Class: linear combination of DFP and BFGS
By = M(;—il-l) M1y =(1- <b(t>)M5iCi§‘ + ¢(t)M(I?£Pl) (5.230)

STy

Set: ¢ = 1 for DFP, ¢ = 0 for BFGS, ¢ = — for SR-1
s

Yy — sTM, (t)S
* L-BFGS Method: For high dimension n = dim(z) > 1, storage of My or By take ~ n?, which could
be unacceptable. Thus instead of storing By, y(;) and s(;), we can store y(y,), S(;;) Vii < t, or at least as

more t; as possible.

5.4.6 Steepest Descent*

Steepest Descent Method

5.4.7 Trust Region Method

Approximation quadric form f at iteration ()
fow (@) = f(®) + (x — x(t)>T Vo 4 L (.TL‘ - :L‘(t)>TM(t) (;U - l‘(t)> (5.231)
x 2 *

Trust Region: within ||z — z®| < A®), fx(t) is similar enough to g, and we minimize fx(t> within trust
region.

J Iteration:

* Preset parameters:

Region Radius :A®) > 0 (5.232)
TR step quality measure :7, (= 0.9), s < n,(= 0.1) (5.233)
region update :y; > 1(= 2), v4(= 0.5) (5.234)

and approximation function (usually use quadric form)

fow (2) (: Fz®) + (x - x(t))T VO ¢ % <m - x(t))T M® (m - x(t))> (5.235)




180 CHAPTER 5. %ttt 5 544304 vincent19

* In each iteration step (%), solve constraint minimizing problem

Tem = argmin f o (z),  s.t.|z — W] < AW (5.236)

and the quality of reduction: p(®):

/ ) — f (mcm)
« Update (1 and A1) based on quality p*)

2D Z g AED) Z AD 0 >
2D Z g AD Z A < o < (5.238)

5.4.8 Conjugate Gradient Method

Note that in Gauss-Raphson method, our iteration step was obtained by minimizing the taylor series to O (z?)

in equation 5.143 ~ page 170,
~ 1
@) % oo (@) = F@) + (@ = 2O)TV f(2)|,0 + 5@ = 2)TVY f@)l0 (@ -20)  (5239)

or, as a more specific problem: get z* by minimizing function

1
x* = argmin f(x) = imTAa: bz +ec (5.240)
xT
which has analytical solution Az* = b, and we could solve this equation using algebratic methods in sec-

tion 5.2 ~page 148. Here Conjugate Gradient Methods uses iteration method to solve it, which can be used in
Newton-Raphson/Fisher Scoring etc. to help find HOp®) = 7 f®) Or use some modified conjugate gradient
method directly on f(zz).

0 Conjugate vectors of A

Note: Here we assume A is symmetric positive definite (SPD). SPD of A allows us to define an inner
nxn

product based on A:
(&, &5)a = €] Ag; (5.241)
and conjugate vectors of A are vector set that are ‘orthonormal’ in the sense of (-, -) 4:
¢T AL = 645, V&, &5 € CV set (5.242)

Further if A is full-rank and conjugate vector set has n independent vector, it can span the whole space

span{¢1, &y, ..., &, } = R, thus we can expand any vector z — (%) on {&;}:

r=204+> e (5.243)

=1
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and express f(z) as function of ¢;, using orthonormal condition £/ A§; = ¢;;

1

f(x) §ZETA$ vz 4 c (5.244)
0) + Z Ci&)TA(x(O) + Z ci&i) — bT(w(o) + Z ci&) +c (5.245)

i=1 i=1 i=1
:% Z A+ Z ci(Az® —p)Tg; + f (x@)) (5.246)

(Z &+ ci(Az® — )T§i> n f(x(o)) (5.247)

i.e. we can minimize the quadric form by minimizing on each direction separately.
(1 Conjugate Direction Construction

General procedue: Using a linear-independent vector set {v; } and use a process similar to Gauss-Elimination

to get {&;}:

T A
Z TAZ’: (5.248)
k— k-1
AT §i&i A
( Z T, ) = 1;[1 <I gTA@) v (5.249)

Note that here we only use the condition & A& = 0;;, and {v;} is arbitrary. To avoid the storage spend
of O(n?), we could choose special way in descent such that conjugate perpendicular information of &, are

automatically ‘stored’ in &, and we would only need storage O(n):

» Conjugate Gradient for Quadric Form: In each descent steps &

k—1 gTAl/k
Thir = Tk + bk, Sk =Vk— Y TR (5.250)

T T
choose oy, by exact line search o, = — i S = — Vi Sk ,7k = Azp —b =V fr,and v, = —V f(zp)'?,

EFAg, EFAg,

and using the fomula:

a;AS = A(xit1 — xi) = 141 — 1 = Vg1 = Vf; (5.253)

2Such that v, = —V f, L span{&1,...,&x—1}=span{vi,...,v5_1}, then.

vp=—Vfi L, Vi<k (5.251)
vh=— Ve L& Yi<k (5.252)
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and the orthogonality of ¢, V f, &, can be expressed as

k—1

(Vfis1 — VI Vi
=-V
G == Vi) Z; (Vi - Vi) &
(Vi = Vi) Vi

3 (5.254)

=—Vf(zg) + §k—1 (PR)
vf]? 1vfk—1
IV fill?
==Vf(zr) + 7o 38k-1 (FR)
IV fe—1ll?
For general minimizing problem, we can either use conjugate gradient just for solving H®p®) = —v f(®)

in each step (¢), or more directly use the following conjugate method directly on the general f(z): take

different « and coefficient of vector as modification to the non-quadric part of f

7y =0+ o)'p)! (5.255)
p == Vi) + 8, (5.256)

where:

¢ General Form of Conjugate Gradient: In each sub-step (t)k, replace Ag) = AW by VVf (m?), ie.

N\T
ORI Cr PN (5.257)
(t)TVVf( (t)) )
0 _Vi@y )TVVf( O}, )5
. = t)T (t) (5.258)
VVf(xk )Py
k=1,2,...,n (5.259)
¢ Fletcher-Reeves Method:
al(:) =argmin f ( ®) + ap(t)> (5.260)
(ONTP)
”Vf(xk—ﬁHQ
k=1,2,...,n (5.262)
* Polak-Ribiére Method:
al(f) =argmin f (;U,(f) + ozp(t)> (5.263)
T
o (VF@) - vra)) Vi)
B’ = (5.264)

IV £ (g2
k=1,2,....n (5.265)
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Section 5.5 Expectation Maximization Algorithm

Motivation: use MLE to estimate some model parameter # for model {x;} i.i.d. ~ f(x|6). Difficulty: for

complex model

Main appication: Probability Generative Model, observed value x; is generated from distributon f(z|z;, 6;, 0.,)
dependent on unobserved random z ~ g(z|6,)(usually z is discrete, denoted z, = zq, . .. 2y). Where we know
the form of f(x, z|6,,,0.), but form of f(x|6.,,0) might be hard to solve, thus we use an iterative method to deal

with the latent variable z so that we can use the known form f(z, 2|6, ,6).

5.5.1 Requisite Knowledge

* Kullback-Leibler Divergence: mearures the difference of distribution p(z) from distribution ¢(z)

KL(q||p) = —/q(x) logzgg dx (5.266)

Note: non-exchange for p, g.

+ Jensen Inequality: For concave function h(z) and random variable X ~ f

E; (h(X)) < h (E;(X)) (5.267)

Then we have the property of non-negativity of KL(q||p):
KL(qllp) > 0, Vp(x), = forp(x) = q(x) (5.268)

A brief proof see section 1.7 ~page 31.

5.5.2 Derivation

Notation: 6 = (6,,,0,), sample X = (x1,x2,...,zn). Expectation of function of ramdom variable h(Y)
on distribution ¢(y) as Eq,) (h(Y)).

Target: MLE of [(0] X) = SN | log f(x:]0). i.e. get 6* = argmax (6| X).
0 Key Formula ’

But due to the intractablility of f(x|€), we have to expand to the full form f(x, z|@), and use a mathematic
trick of E,(-), where ¢(z) is any arbitrary distribution of z.

f(z]0) =f(x,2|0)f(z|x,0) = (5.269)

= log f(x|0) = Ey(.) (log f(2(0)) =E,.) (log f(z, 2|0) f (2|, 0)) (5.270)
— [ ) tog 1o 10) (2o, ) ¢ (5.271)

— [atr0e 5 kel el ) (5272)

Z/Q(z) longz, Vo =x1,%2,..., TN (5.273)
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0
where / q(z2) log (@ 210) dz is also called ELBO (Evidence Lower Bound) of log f(x|6). And we could
q(z
similarly get the ELBO of log-likelihood:

S f(xi,216)
101%) = Zlogfme =Y Ja@roe S0 g pbo(.0). a= (e} 27

i.e. ELBO provides a lower bound estimate for /(6| X), thus we can instead maximize ELBO(q, #), using

coordiante ascent is the Maximization-Maximization Algorithm:."?
¢ Maximum : ¢/"*Y) = argmax ELBO(¢, 0%)) = p(z|z, 0®) (5.275)
q(2)
6 Maximum : (1) = arg max ELBO(¢**1), 9) (5.276)

Further if we take can derive and use the form of p(z|z, 8) (sometimes this posterior is also intractable), then

# maximization step becomes

9+1) — arg max ELBO ( (z]z,0® Z/ 2|z, 0 m dz (5.277)
0 3327

—argmaXZ/ (z]2i,00) log f (x4, 20) dz = Q(0]6D)) (5.278)

=arg maxz /p(z]:vi, 0™ log f (s, 2|0) d= (5.279)
0 i1 Y%
and naturally ¢ maximization Step becomes computing (6 |9 Z / |xl, 10g f(x;, 2]0)dz

i.e. the Expectation of f(z;, z|@) on the posterior p(z|z;, #*)), gather as Expectatlon -Maximization Algorithm:

Algorithm Expectation-Maximization

Expectation-Step : Q (66" Z/ (z]zs,00) log f (x4, 2|0) dz = Z (w00 [log f (i, 2[0)]  (5.280)

Maximization'Step : 9(t+1) = argmax Q(ew(t)) = argmax Z /p(z\xi, e(t)) IOg f(-fz, 2‘6) dz (5-281)
0 0 1 /2

E-M Algorithm can guarentee ascent of ELBO, and finally can ensure convergence (at least to a local max-
imum).
An application of E-M Algorithm is Gaussian Mixture Model for Clustering, detail see section 4.7.3 ~ page 140.

U] Limitation and Improvement

* Note that for generative model, we used a set of latent variable z, further we need an fz dz in Q(0|6™),

thus E-M requires low-dimensionality of z (e.g. in GMM, z is one-dimensional).

Bwhere one of the ‘coordinate” is the function space q(2)
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* Slow convergence near extreme point, use acceleration improvement, e.g. Louis acceleration.

* In g-Maximization step, the form of ¢ might be intractable (i.e. p(z|z,6) intractable). For such function
extreme value problem, use VEM (Variational Expectation Maximization) / VBEM(Variational Bayesian

Expectation Maximization)

Section 5.6 Statistical Simulation

Statistic model inference problem can be solved using simulation, i.e. Monte-Carlo simulation. We can use

the model-based random numbers to analyze model.

* Simulation is well-adapted, especially for high-dimensional problems

* Low-precision, usually sd ~ O(—=).

VN
 Simulation method is also usually used for validation of model reliability.

An important application scenario of random simulation is Bayesian Statistics. More about it is introduced
in section 13.3 ~page 343, where there are variants of simulation methods and more example. This section would
just introduce the basic ideas and methods of simulation.
> R. Code

Remember to sed random generator seed before simulation.

1 |set.seed (INI_NUM)

5.6.1 Random Number Generation

Motivation: In many simulation models, we need to generate sets of random number with some distribution,
however they are not totally ‘random’ because of repeatability need.

Idea: use a ‘seed’ to generate pseudo ranom number, where within each seed, numbers are random. The
random number sequence can be repeated by setting the same seed.
[0 Linear Congruential Method for U (0, 1)

Linear Congruential Method (LCM) is the most commonly used method for generating uniform distribution

U(0, 1), which is the basic for more complex distribution.

Algorithm Linear Congruential for Uniform Distribution

1. Set seed X and pick proper a, ¢, m for LCM
2. Repeat for iterative ¢:

(a) compute X; 1

Xit1 =aX; + c(mod m) (5.282)
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(b) Random number normalized to (0, 1)

Rij1 = (5.283)

s [

Choice of a, ¢, m: LCM sequence has period m thus m should large , and choice of a, ¢ should avoid early

period value, and let R; distribute uniformly in (0, 1). Useful choice:

a C m

Lehmer’s 23 108 +1
RANDU 2164+3 1 231
IBM 16807 231 1

U Improvement of LCG

Key problem is the periodically structure of generated X;, i.e. when some X return to X, then the following

XE+

P, to generate R;. Example: L’Ecuyer-CMRG Algorithm.

; = X; will repeat. Idea: modify the generation rule, e.g. use groups m of LCM Xj,,, with differnet period

X.
= X; >0
m . ¥
Xi= ) (-1)/"'X;; | modm Ri={ZL41 X, <0 (5.284)
- m
Jj=1 1
1-— X;i=0
m

Note (Guess): why we want X; € (0, 1) rather than [0, 1]. (0, 1) is homeomorphous with R, which would

be convenient for generate more distribution on R.

More improvement: use general form
Xi—i—l = Q(Xi7 Xi—l; .. .)modm (5.285)

where in g(. . .) use more X, or take different function form.
[l Random Variate Generation
Further for any arbitrary distribution generation, which is “variate’ of uniform distribution'#

Target: generate random number sequence with some distribution (f(x) or F'(x) known). Denote random

number sequence with U (0, 1) distribution as U;

* Quantile Method/Inverse Transform Method: For distributions with traceable CDF F'(z) € (0,1).

X; = F N (Uy) (5.286)

KT variate [T, EFH ) A BB EPRRBORIE 267 variation, JFRIE—FIFRIVERIFTAES S, X R
VFAT CAF At A7 BEATLECRT 25 20 70 A BE LB 2B T A — R il
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U Proof:
Pz <X <z+dz)=P(F(z) <U < F(x +dz)) (5.287)
zagif”)dz = f(z)dz (5.288)
O

* Acceptance-Rejection Sampling: For F'(z) intractable, only f(z) known,

First decompose f(z) as

Fa) = 2D oyg(a) = pla) = &

= To@)g(x)dz  9(2) (5-289)

where g(z) is some distribution that we can easily generate as proposal distribution. Then X}, sequence

~ f(x) can be generated as follows:
1. Proposea® ~ g(x)andau ~ U(0,1)

2. Decide whether accept/reject T to be X, by:

(5.290)
p(Z) <@ Accept
O Proof:
_ f@)/g(x) _ _ 1
P(Accept|z) = Tp(€)9() e = P(Accept) = /IIP(Accept\x)g(x) dr = Tr(E9(0) e (5.291)
Using Bayesian Rule:
P(xk|Accept) = P(A;f(eig:e]ig(m) = f(Xk) (5.292)
(]

Note on Acceptance-Rejection Sampling:

— Intuition: figure f(z) lies under ¢g(x) (where ¢ = sup p(x)). If for each x we accept it with probability

f()

: . 1 .
p(x) == < (@)’ then figure under ¢g(z) is ‘cut down’ into f(x), = = acts as the normalize constant,
ég(x ¢

which corresponds to ‘accept rate’ controlling generate frequency.

We should choose a proper g(z) which is similar to f(x), so that p(x) is close to 1 and the algorithm

is efficient.

— Expected accept ratio is

Ef&Ng(m) [p(ZL‘)] =

ol =

= /p(:c)g(ﬂs) dz (5.293)

— Inefficient for high-dimentional problem: we have limited choices of sample-able distribution g(Z),

and usually the expected accept rate [ p(z)g(z) dz is low.
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— Thick tail of g(x) matters to control the bahaviour of f(z)/g(x), otherwise we might not be able to
Tr—00
find a ¢ such that ég(z) bounds f(z), making the sampling impossible.
* Importance Resampling: A method induced from importance sampling for integration, see Importance

Sampling for detail.

> R. Code
Use the following command for all distributions supported in R. stats: :. More distributions based on

packages see https://CRAN.R-project.org/view=Distributions

1 |?Distributions

5.6.2 Markov Chain Monte Carlo Method

Markov Chain Monte Carlo (MCMC) aims at solving integration and simulation problems by sampling
from some distribution. MCMC can deal with complex distribution in high dimensional, an example is Gibbs
distribution

P() = 5@

, s € phase space (5.294)

In this case, partition function is almost impossible to calculate, what we could obtain is just the unnormalized
distribution.
1 Markov chain

Detalied theory of Discrete Time Markov Chain (DTMC) see section 12.1.2 ~page 310. Here are some brief
precap.

Denote phase space X > x. We could design such a process X to transit from one state to another, i.c. a

conditional probability
P (X1 = x| Xo =20, X1 = 21,..., Xt = x¢) (5.295)
a markov process is a memoryless one in which future only depends on the current one step, i.e.
P(Xip1 = x| Xo =20, X1 =21,..., Xt = x¢) = P(Xp1 = 2| Xy = x¢) (5.296)

for discrete version = € {1,2,...}, we could denote it into a discrete-time stochastic process that is time-

homogeneous

pij =P (Xep1 = j[ X = 1), sz‘j =1 (5.297)

J

which could be denoted in matrix form P = {p;;}
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Further, n-step transition denoted

pz(»f) =P (Xpn = j| X =1) (5.298)
=S " Yk (5.299)
k
= Z Diky Pkiks -+ - Php_1j (5.300)
k1,k2,. 0 kn—1
=p" (5.301)

Stationary Distribution / equilibrium distribution / invariant distribution 7, of a markov satisfies
Too = Moo P = Moo P™ (5.302)

Convergence and Ergodic Theorem: An ergodic markov chain converges to a unique stationary distribution

7.1_0015

Moo = mo lim P (5.305)

n—oo

where 7 is an arbitrary initial distribution.

Detailed Balance Condition of stationart distribution 7:!°

m(0)pi; = 7(i)pji, Vi, ] (5.306)

is a sufficient condition for stationary distribution. Proof see section 12.1.2 ~page 310.

MCMC aims at designing a proper chain p;;, starting from some arbitrary state 7o, and after some (large

enough) transitions ¢ we would expect Ty — Moo, B =1,2,....

[0 MCMC Algorithms for Unnormalized distribution
To sample from an unnormalized distribution p, i.e. p = f{)((g))df’ but normalizer Z = [ p(&)d¢ is
p

impossible to calculate, we could only get relative probability ratio of states.

* Metropolis-Hastings Algorithm:

Algorithm MCMC

3Ergodic = Irreducible + Aperiodic. Denote i ~» j if In s.t.P (X, = j|Xo = i) # 0

* Irreducible:
i~ g, j~d, Vi (5.303)
All states of irreducible chain have the same period 7; = T.
* Aperiodic: if one of the state is aperiodic 7' = 1, then all states are, where
Period T; = ged{n : P (X, =i|Xo =1i) > 0} (5.304)

!“Detailed balance condition has a similar correspondence in Quantum Mechanics, in which 7(4) is the state density at i, and p;; is the

transition probability.
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1. A pre-selected conditional distribution ¢(+|z) is used as proposal distribution. In each step ¢, a new

state is proposed as
Y ~q(|Xy), e P (Y = y|Xy) = q(y| Xt) (5.307)

2. Acceptance ratio ary|x, is the probability to accept the proposal as the new state

, p(Y)q(Xe]Y) }
aY|X;) =mind 1, —————= 5.308
1) =min {1 F (5309
3. Increment of t — ¢t + 1 if accept, else repeat the proposal-acceptance process.
Comment:
— Detailed balanced condition of M-H Algorithm
P(@)pey =p(x)q(ylr)a(ylz) (5.309)
, p(y)q(x!y)}
=p(z z)min< 1, ——-= 5.310
ple)a(yla)min {1 22, (5:310)
=min {p(x)q(y|z), p(y)q(z|y)} (5.311)
. p(x)q(ylz) }
=p(y)q(xr|y) min{ ————=1 5.312
Widlely) {p(y)q(x!y) G312
—p(Y)Pya (5.313)

i.e. pzy = q(ylx)a(y|x) is the transition matrix to generate the stationary distribution as 7o, = p(x)

— Choice of proposal ¢( - |z) is flexible, but should be properly chosen for higher acceptance to increase

efficiency.

* More variants of MCMC see section 13.3.5 ~page 346 and section 13.3.6 ~ page 348.

5.6.3 Numerical Integration With Simulation

Motivation: In Bayesian statistics we usually use the following expression to calculate some posterior:

£(y16)£(0)
/9 £(410)£(6) do

in which 6 is the parameter, y is the observd data. We might further construct come statistics using the posterior,

f0ly) =

(5.314)

usually in an integration form. But a key difficulty is calculation of the normalize integration [ f(z|z)f(z)dz =
z
E)[f(x]2)], where f(z) is the prior of 2. Usually such integration needs numeric calculation. Statistical simu-

lation using sampling is one of the methods.

Target: some kind of integration calculation:

I(h) = /EX h(zx) dz (5.315)
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* Hit-and-Miss Method: if X ® h(x) is bounded in e.g. [a, b] ® [0, M]. We can generate uniform distribution

(z,y) in the region, and count # points under h(x), proportion of accept denoted p, then

I=M®b-a)p (5.316)
such estimation is guarenteed by CLT:
. M(b—a)]?p(1 —
IH1>N<I,[ ( “])\][p( p)> (5.317)

* Mean Value Method: generate uniform distribution in e.g. X = [a, b], and calculate function value at each

sample item h(u;), estimator

. N
[=— ; h(ug),  w.rt.u; ~ Ula,b) (5.318)
with CLT:
N2
SN (I, (b—a) %T(hw))) (5.319)

Note: var(fH) > var(fM). Intuitively, more points are used in mean value method, thus is more precise.
Random simulation has good performance for high-dimensional case by avoiding curse of dimensionality.
U Importance Sampling Estimator

Improvement of mean value estimator: Note that in mean value with uniform distribution, variance

~ —a 2
var(Iv) = b N )

var(h(U)) (5.320)

could be large if h(x) varies dramatically. To avoid the disadvantage, we could use some other distribution

of x; ~ p(x) instead of z; ~ U(a,b), to get the integration

h(z) h(x)
I:/ h(x dIL‘:/ —p(z dx:Ex[ (5.321)
L e e
Estimator use
| X
g(x =N Z w.rt.z; ~ g(x) (5.322)
Variance
- 1 h(X))
var(l, ) = —var | —= (5.323)
e =577 (G
ie. if (@) ~ const, the estimator can be more precise.

g(x)
* An application of importance sampling: estimating expectation of function of .v. Ey(,) (¢(z)), where r.v.

with f(z) distribution is hard to generate. We can generate another random number series z; ~ ¢(x):

= / $(2)f(2) / o(x 7)dz = Eq(q) <¢($)§((§))> (5.324)
- [l @) a, W =L (5325)
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Use Estimator:

N
|
I=+ Z} $(xi)W () (5.326)
As aworse case where we only have an unnormalized f (x), with the normalize integration f(x) = fﬁ& =
% f(z) incomputable. Use property of weight W (z) = ;g? :
N
- - 1 -
/W(a:)g(m) dz = /f(g) d=c=c= > W) (5.327)
i=1
Estimator:
N - -
- - i)W (x; = i
SN W () 9(:)
» Effective Sample Size (Number of independent sample unit to get equivalent precision):
N N?
(5.329)

Neffect = E [W(x)Q] ~ Zf\il W ()2

 Importance Resampling: Importance sampling could be used to obtain random number series with distri-

bution f(z), but it is not efficient. Here’s the process:

First obtain &; ~ g(z) the proposal distribution, i = 1,2,..., N. then compute importance W (Z;) =
f(&:)
9(@i)

random number series {x;}7_; with distribution z ~ f(z).

. By sampling from {#;}Y | a relative small subset with probability weight W (z;), we can get a new

Comment: Idea of importance sampling estimation is to put more point at where h(x) has large function

value to get better fit of integration, i.e. smaller variance.

5.6.4 Bootstrap

In statistic inference for distribution x ~ f(x;0), 6 € ©, we want to estimate some statistic ¢ by estimator &,

A~ A~

including e.g. mean F(¢), standard error SE = {/var(¢). In section 2.3 ~ page 52 we used pivot variable method

to estimate statistics: parametric method, model required. Difficluty: strange distribution/strange statistics — use

non-parametric method, e.g. bootstrap method.

[J Bootstrap Method

1.

2.

3.

Conduct bootstrap given sample X = (X1, Xo,..., Xn), X; i.i.d. ~ f(x;0).

Use sample X to estimate population distribution as f (x). e.g. empirical CDF.

Repeatedly sample from f (x) to get B samples of size n:

x® = (x® xP . x®), b=1,2,...,B (5.330)

For each sample X (%) estimate a statistic é(b)
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4. {p®)},b=1,2,..., Bis the distribution estimation of ¢ based on f(x), i.e. sample of statistics. We could

use this sample of statistics to estimate e.g. SE((;AS), or get interval estimation of .
1 B
Do 7(b)
Dboot = 5 >, & (5.331)

J Bias Correction

The above estimator is the unbiased estimator for ¢. However in the sense of minimizing MSE, usually

¢ = ¢ — bias(¢) is a better estimator. Bias b = ¢ — ¢ can be estimated as

~

= ngoot —¢ (5.332)

(bt

where ¢ is calculated by using the original sample X. And MSE estimator is:

®) (5.333)
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Instructor: Sheng Yu

This section contains basic data acquisition, data cleaning, data processing, date visualization methods. De-

tails for data analysis are not covered.

[0 Road to Data Scientist

Linear Regression .

Regression |
Ranking (@)

Classificatiol

1. Fundamentals

O

Mafrices & Linear Algebra Fundamentals .

Hash Functions, Binary Tree, O(n) ‘Mormal. Poisson, Gaussian)

Relational Algebra, DB Basics ()
Inner, Outer, Cross, Theta Join ()

CAP Theorem (@)
Tabular Data .
Data Frames & Series () (@)

sharding (@)
oLar (@

Multidimensional Data Mode! ()

ETL @

Reporting Vs Bl Vs Analytics . .

] 6.1:

becoming-a-data-sc

gy
%

Road to

How much Data? ()

Feature
Extraction

n

Prob Den Fn (FDF) (@) [ ]

ANOVA (@
Skewness (@)

Continuos Distributions .
Data Frames (@) Lists (@)
Factors (i)

Arrays
Reading Raw Data () vs @

Matrices
Subsetting Data () ®

Vectors ()

Cumul Dist Fn (CDF) (@)

Random Variables () Reading CSV Data ()

Bayes Theorem ()

Probability Theory ()

Manipulate

Percentiles & Outliers () Dawa Frames

s,
Histograms (@) 4, 74, o

d DZ“G?/ 0'3{1/‘5.’:§ Functions . Variables ()
Exploratory Data Analysis (@S [ )

Expressiol

R Basics (@)

R Setup
R Studio

d Descriptive Statistics
R
a.‘"" . (mean, median, range, SD, Var)
= Pick a Dataset
&
g . (UCI Repo)

Data Scientist,

ientist/. More

data-scientist-roadmap

194

Using ETL ()

tutorial

e

||
Sampling (@)

Stratified =

Sampling

Principal
Component ()

Analysis I
R

Rapid (@) Name & Data Nodes

Miner

. Setup Hadoop (IBM / Cloudera / HortonWorks)

IEM

SPSS . Data Replication Principles

@ Hors

@ Hadoop Components

@ Map Reduce Fundamentals

O 7. Big Data

S€C

o
®

£

. Data Exploration in R (Hist, Boxplot etc)

@ Uni, Bi & Multivariate Viz

@ ooplor2

@ Histogram & Pie (Uni)

@ Tree & Tree Map
O 10. Toolbox
@ scatter Plot (Bi)

. ine Charts (Bi) . MS Excel w/ Analysis ToalPak

@ soctioichats (@) Java, Python

@ sunvey Plot @ R. R-Studio, Rattle

@ Timeline

Decision Tree

. Weka, Knime, RapidMiner
@ Hadoop Dist of Choice
@ spark, Storm

. Flume, Scibe, Chukwa
. Nutch, Talend, Scraperwiki

Zookeeper . Webscraper, Flume, Sqoop

Avro
Storm: Hadoop . tm, RWeka, NLTK
Realtime
Rhadoop, () RHIPE
RHIPE
@ L]
@ Cassandra

@ VongoDB, Neodj

"

, ggplot2, Shiny

D3
L)

http://nirvacana.com/thoughts/2013/07/08/
https://github.com/MrMimic/
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https://github.com/MrMimic/data-scientist-roadmap
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Comparison of R, python:focus on different aspects of ‘Statistics’:
* Differnece in programming philosophy: R for data analysis and python for data processing

* Difference in operating domain: R for statistical programming while python for general programming.

Section 6.1 Basic R. Manipulation

6.1.1 Installation and Maintenance of R.

O Installing and Updating

R.: update by delete old version and install new version.
* In CRAN (The Comprehensive R Archive Network): https://cran.r-project.org
* In Mirror@TUNA: https://mirrors.tuna.tsinghua.edu.cn/CRAN

RStudio: https://www.rstudio.com

[0 Running R. command :
e InR. GUI;
¢ In R. command line terminal;
* R. CMD BATCH;
* Rscript;
— Use > to redirect output(overwrite);
— Use >> to append output.
0 R. package library: packages are collection of R. functions (as well as test data and sample code).
+ .1libPaths() show package library location' ;
e library('PACKAGE_NAME1','PACKAGE_NAME2',...) load packages.
* install.packages('PACKAGE_NAME1', 'PACKAGE_NAME2',...) install package from CRAN/mirrors;
* installed.packages() show all installed packages;
* updata.packages(checkBuilt = TRUE, ask = FALSE) update installed packages;
0J Working directory manipulation:
* getwd() get current working directory;
* setwd('TARGET_PATH') set working directory (as an existing path).

e dir () show current directory.

"Unlike in C or python where . is an operator, . in R. is just a common character, without special meaning.
This feature can be used in naming self-defined functions: use .FUN_NAME1 for within-project function while FUN_NAME? for external

interface.



https://cran.r-project.org
https://mirrors.tuna.tsinghua.edu.cn/CRAN
https://www.rstudio.com
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[J Recommended R. Project Organization : working directory organized like
* data/ folder for structured original dataset;
» result/ folder for output result;
* presentation/ folder for result representing slides/reports/etc.;

» .r project file xn.
] Looking for Help/Example of function:

* ?FUN_NAME();

e help('FUN_NAME');

6.1.2 Data Structure and Basic Manipulation in R.

1 Atomic Classes
e Character: 'abc';
* Integer: 3L;
e Numeric: 2.4;
* Logical: TRUE,FALSE,T,F;
 Special types: NA, NaN, NULL, Inf

] Operators

* Numerical Operators: +, —, *(multiply by column), /, %*%(matrix multiply), =, %%(remainder operate);

» Logical Operators: ==,etc.; & and | for common operator, && and | | for comparing the first element;

¢ Round a numeric:

as.integer (), round towards 0

trunc()

ceiling()

floor ()

round (NUMBER_TO_ROUND,digits = DIGITS)
U Type Conversion

* First need to meet the need of

Key Criterion: when converting mixed type in to the same type, use the type with more compatibility.

* Logical — Numeric:

0 Data Structure

* Atomic Vector : Column vector is the basic data structure in R. (scalar is length=1 vector).
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Only data of the same class can be held in one vector.

Initialization:
— Ordinary way:
% c(1,2,3), c(T,FALSE,TRUE), c('a',NA,'b")
% vector(mode = MODE,length = LENGTH)
% logical (LENGTH) return FALSE vector
where c () for ‘combine’;

c () combines all ‘vector-like objects’ into one vector, e.g. c(c(1,2,3),c(1,2))>> c(1,2,3,1,

2).
— Sequence vector:
% 1:3.5>> ¢(1,2,3),3:1>> c(3,2,1)
% seq(from, to , by, length.out), length.out for total vector length;
% rep(SEQ_TO_REP, times, lenght.out, each), used in k-fold cross validation labelling.

Operations:

— between vectors of different length SHORT and LONG: First SHORT <- rep(SHORT,
length.out=1length(LONG)). Then operate SHORT and LONG.

e.g. c(1,2)+ c(1,2,3)>> c(1,2,1)+ c(1,2,3)>> c(2,4,4)

— Element access: a[il, i starts from 1

Vectorized Operation: All operation in R. are based on vector, and vectorized operation is
Parallel Arithmetic, which is much faster than loop such as for
A Consider using vectorized opertion when writing code for Speed! Detail see sec-

tion 6.1.4 ~ page 200.

+ Factor : A special kind of ‘vector’ in R., used to label discrete categorical data.’
Initialization:

factor (FACTOR_SEQ, levels = FACTOR_LEVEL, labels = ...), FACTOR_LEVEL is the ‘rank’ of

each factor, 1abels is the ‘tag’ of levels.
A quick way to factorize a numeric vector x by interval division:
cut_number (x, NUM_OF_LEVELS)

* Matrix : Only data of the same class can be held in one matrix.

Initilaization: matrix (DATA_SEQ, nrow, ncol, byrow = FALSE, dimnames = NULL). Defaultbyrow

= FALSE because matrix data is stored as combination of column vectors.
If length (DATA_SEQ) < nrow*ncol, then DATA_SEQ is repeated with length.out=nrow*ncol.

Operation:

Factor vector is stored as integer vector.
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Common operators +—*/~ etc. operate in column-by-column mode (vectorized operation).

Binding matrix: cbind for [A,B] and rbind for [A;B]

Transpose: t ()

Matrix multiplication: %%

Inverse matrix: solve () (The essence of inversion is solving linear equations)

Diagonal matrix:

% diag(VECTOR) returns a matrix diag{ VECTOR}

% diag(MATRIX) returns the diagonal element vector

— Element access: a[i,j], a$0BJECT_NAME

Dimension: dim(), nrow (), ncol()

Rank: gr (MATRIX) $rank

 List : A pack containing various datatype, generally also a kind of vector(but not atomic vector)
Initialization: 1ist (OBJECT1,0BJECT2,...)
Element access: a[[i]], a$0BJ_NAME

* data.frame: ‘Mixture’ of matrix and list. data.frame is actually a kind of list(with some constraint),
organized in the shape of matrix (but allowing different datatype for different columns, each column is a

list object).
Each column of data.frame has name: names (DATA_FRAME), colnames (DATA_FRAME)
Element access: ali,j],al[i]], a$COL_NAME

[J Data Read & Write

e Common R&W: read. /write.

read.table(FILE_NAME,header = FALSE,sep,colClasses,stringAsFactors = FALSE)
* read.csv() basically the same as read.table

* write.table(DF,FILE_NAME, sep,row.names=FALSE)

readxl::read_x1sx(FILE_NAME,sheet = SHEET_NUM,range = 'RANGE')
Some relative arguments:

— quote=""'" use ' to quote/identify string, set quote="'" to avoid misread strings such as ‘Levene’s

Test’
— encoding='UTF-8', char encoding system, used especially for dataset containing CJK char.

— nrows=LINE_NUM read first LINE_NUM lines
» Large Data Read & Write:

— preset colClasses
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| |temp.dat <- read.table(FILE_NAME, nrows 100)

» |classes <- sapply(temp.dat, class)

3 |dat <- read.table(FILE NAME, colClasses = classes)

— readr::read_delim(FILE_NAME,delim=SEP) can speed up
o Text Write: sink (FILE_NAME, append=FALSE), write output into a file, the same as > in terminal.
* .RData Binary Format Read & Write: RW in .RData format, fast to load.

— save(DF,file = FILENAME)

— load(FILE_NAME)

6.1.3 Functions and Control Flow

O Program Speed:
system.time ({COMMAND})
UJ Function Call

* FUN_NAME (ARGUs)

* do.call('FUN_NAME',LIST_OF_ARGUs), look for a function naming FUN_NAME in R. and call.

a % NEW_OPRTR 7% b to call self-defined binary operator.
o 'x' etc. used in apply (FUN = 'x')
* R. allows auto-completion to ARGUSs, e.g. rep(0,length.out = 10) » rep(0,length = 10)

O Function Definition

> R. Code

Basic function definition in R.

1 | FUNC_NAME <- function(ARG1l = ARG1_VALUE , ARG2, ...) {
2 FUNCTION_BODY

More key elements in funtion{}

e return(RETURN_OBJ) at the end of function, without return (), output the last line
* stopifnot (COND1,COND2, .. .) atthe beginning of function, used to test ARG class
» stop(ERROR_MESG) output error message

e ... asaspecial argument

— Pass . .. to another func in this function

— Handle arbitrary number of input
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* Function can be defined within function

* Function is a kind of variable — used in apply, sapply etc. for vectorized programming.

* Anonymous function: used in sapply (X,FUN=function() {STATs}) for quick definition

» FUNC_NAME can be used for new-defined binary operator as '/,NEW_0OPRTRY,' <= function()

O Flow Control

e if and else if, example:

1 |if (COND1) {
2 STATEMENT
3 |} else if (COND2) {

4 STATEMENT
s |} else {

6 STATEMENT
7|}

e ifelse(COND,IF_YES_STAT,IF_NO_STAT) a vectorized version of for + if else.

* for: Loop in R. is Extremely Slow, avoid loop, use vectorized operation.

i |[for (VAR in SEQ) {
2 STATEMENT

* switch(TEST_EXPR,CASEl= RETN1,CASE2= RETN2,...)

6.1.4 Vectorized Operation

* apply () function series:

— apply (MAT,MARGIN,FUN) for matrix apply, MARGIN=1 for each row, 2 for each column

Example:

i |apply (matrix(c(1,2,3,4),2,2), 1, sum) >> c(4,6)
2 |apply(matrix(c(1,2,3,4),2,2), 2, sum) >> c(3,7)

— lapply(LIST,FUN) for list/data.frame, apply FUN on each list elements,1ist returned

* sapply(X,FUN) for list/data.frame apply+simplify, vector/matrix/list returned

— tapply (X, INDEX,FUN): for each index, use FUN respectively.

— mapply (FUN, ARGU_OF_FUN), use argument name to label ARGU_OF _FUN, or causes bad readability.

Example:
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i |mapply (function(x,y,z,k){(x+k) " (y+z)} , x = ,y = ,z = ,k =)

e Vfunc <- Vectorize(FUNC_NAME): define vectorize version of function.

e with() and within():

— with(DF,aggregate (PART,by,FUN))

— with(DF,STATE) ,within(DF,STATE), within allows new column append

outer (VEC1,VEC2,FUN): A Two-variate extension of mapply (), output wedge of two vectors.

ifelse(COND,YES_STAT,NO_STAT), vectorization supported.

6.1.5 Subsetting

* By position: x [RANGE]

x[4]

x[-4]: x without the 4" item (which is different from python, where selects the reciprocal 4™ ele-

ment).

x[2:4]

x[c(1,2,5)]
* Byname: x[, 'COL_NAMEs'], x[, 'COL_NAME1':'COL_NAME2']
* By condition: basically, x [LOGI_VEC]
- x[x==10]
— x[x %in% c(1,3,4)], linear search, not based on hash algorithrn3.
Usually used for conditional selection of data.frame
» Subsetting for data.frame and list: x [ [RANGE]]

Simplified / Preserved subsetting: whether preserved datatype, e.g. df — df (preserved) v.s. df — vector

(simplified).
DataType Simplified Preserved
vector x[[111] /=[1]
list x[[1]] x[1]
factor x[1:4,drop=T] =x[1:4]
matrix x[,1] x[,1,drop=F]

data.frame x[,1],x[[1]] x[,1,drop=F], x[1]

Z 6.1: Simplified/Preserved subsetting

3If really needed, use env () to reset environment.
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* Other subsetting:

hind

— unique (), return with each element appears only one times

— duplicated(), TRUE when appear the n > 1 times

— which(x==4), return position of matched element

— which.min(), which.max, min(), max()

— grep(REGEX, X,value), search for elements with REGEX pattern: value=F returns position, value

=T returns elements, grepl (REGEX, X) returns logical vector
— match (TO_BE_MATCHED, TARGET), returns the index of elements of TO_BE_MATCHED in TARGET

> R. Code

Example:

| |vecl <= c('a','a','b','b','d",'d",'b")
2> |vec2 <- c('d','a','b")
3 |match(vecl,vec?2)

4> [1] 2233113

— subset(X,...), ... aseries of select criterion. not allowed: subset (X, ...)<-

» Use subsetting to sample: DATA[sample(1l:nrow(DATA),NUM_OF_SAMPLE,replace),], replace=T

for with replacement

6.1.6 Data Manipulation With dplyr. And tidyr.

dplyr and tidyr are two useful package for data cleaning & manipulation. Use package tidyverse include
both of them.

tidyverse for tidyuniverse, includes dplyr, tidyr, readr, ggplot2, stringr, etc.
O %>%: pipe in tidyverse, so that functions in tidyverse with format FUNC(DF,...) can pass on DF

results along the pipeline.
Some examples see section 8.1.5 ~page 239.
O dplyr Package.
* Cheet Sheet: https://nyu-cdsc.github.io/learningr/assets/data-transformation.pdf

* select(DF,...), where ... can use column index/name range as in subsetting, or some helper function

for advanced subsetting:

— matching position:

% everything()

% last_col()

— matching column name:



https://nyu-cdsc.github.io/learningr/assets/data-transformation.pdf
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% start_with('PATTERN'), end_with('PATTERN'), contains('PATTERN')
% match('REGEX'), column name with REGEX pattern
% num_range('x',1:4) delect column name c('x1','x2"','x3"','x4")

% any_of (CHR_VEC) select column from CHR_VEC

— where (FUN), select those FUN (COL_NAME) returns TRUE

e filter (DATA,CONDs), select elements with CONDs conditions

* arrange (DATA,COL), sort by COL, arrange (DATA,desc (COL)) for descending order

e mutate(DATA, .. .),append new columns accordingto . . . definition; transmute () drops original columns.

. . . definition can use advanced window function:

— lead(COL),lag(COL), e.g. lead (COL) [i]=COL[i+1], can use ...=COL-lead(COL) for differne-
tial
— dense_rank(COL), percent_rank(COL) rank number

— ntile(COL,N) break into N groups labeling 1:N

— cume_dist (COL), cummean (COL), cumsum(COL), cummax (COL), cummin (COL), etc. cumulative

value

* summarise(data,...), ... for summarise function.

¢ Row selection:

slice(DF,ROW_RANGE)

— distinct (DF) remove duplicated rows

sample_frac(DF,FRAC,replace), sample FRAC fraction from DF

sample_n(DF,N,replace), sample N cases from DF

top_n(DF,AMOUNT,RANK_COL) select AMOUNT top ranking by RANK_COL cases

* Data combining see slides.

0 tidyr Package

* Cheet Sheet: https://leadousset.github.io/intro-to-R/cheatsheet_tidy.pdf

* gather (DF,key='KEY_NAME',value='VALUE_NAME',...,na.rm), meltadata.frame.



https://leadousset.github.io/intro-to-R/cheatsheet_tidy.pdf
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e.g. gather(df, '"KEY','VALUE',c('COL1','COL2',"COL3")) transfers ... as:
ID KEY VALUE
1 COL1 ap
2 COLI as
ID COLlI COL2 COL3
1 aq bl C1 1 COL2 b1
— (6.1)
2 a ba 2 2 COL2 by
1 COL3 a1
2 COL3 Co

» spread(DF,key='KEY_NAME',value='VALUE_NAME'), inverse of gather ()

* separate(DF,COL, into=SET_VEC, sep='REGEX '), separate COL into columns with name in SET_VEC,

sep according to sep

unite (DF,COL,SET_VEC,sep="'") inverse of separate ()

Section 6.2 Text Processing & Text Mining

Data cleaning
Data manipulation
Information extraction: mode identifying/relation extraction

Text mining: anaylzing token distribution, ignore word order

NLP: concept identifying based on sentence; untimate goal: ‘understand’ sentence meaning.

Tools for Text processing:

R.: suitable for easy task

python.: best

java: strong, but not suitable for deep learning
c++: fast, inadequate package

Notepad++/Vim / VSCode, etc.

6.2.1 Basic Text Manipulation With stringr.

U R

. base & stringr package:

The prior one is used more often
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* Cheet Sheet: http://edrub.in/CheatSheets/cheatSheetStringr.pdf

* str_length(STRING), nchar (STRING)

* paste(...,collapse=NULL),str_c(...), both are vectorized operation
Argument:
— sep: sep between each . . . corresponding elements, with collapse=NULL, return a char vector

— collapse: sep when combining collapse=NULL vector elements, NULL for not combining
— Special character: \t tab, \r & \n & \r\n new line, \xad ‘-’ at end on line for word-connecting
* str_split(STRING,pattern='REGEX')/strsplit(), split string at REGEX pattern fitted, list returned

e str_sub(STRING,start,end), substr(). The start char to end char of string, use negative index as

in python.
Can be used to replace: str_sub(...)<- REP_STR
* str_locate_all('STRING',pattern='REGEX')/str_match_all('STRING',pattern='REGEX')

grep(pattern='REGEX',x='STRING',value=T), search for elements with REGEX pattern: str_locate

_all() or value=F returns position, str_match_all () or value=T returns elements.

* str_replace_all('STRING',pattern='REGEX',replacement='REP') grepl (REGEX,X) returns log-

ical vector, include or not. str_extract_all('STRING',pattern='REGEX')
* gsub(pattern='REGEX',replacement='REP',x='STRING'), replace REGEX field with REP

* str_trim(...,side = ), trim extra white space at side='both'/'left'/'right'

6.2.2 Regular Expression

Regular expression is a text pattern/mode. abbr. regex/regexp. Regex is supported in most common lan-
guage, same syntax used.
Tutorial: https://www.runoob.com/regexp/regexp-tutorial.html

U Key Elements

 Literal: common char, e.g. a. Include most char on keyboard. Upper/Lower case sensitive.

* Metacharacters: \"$. | 7*+() [1{}, use e.g. \. to escape meaning.

language interpreter regex interpreter\

\.

Note: when typing regex in programming language, sometimesuse \\.: \\.

identifying .
* Character Class: [, identify one of elements in [J. ~ within [] for C.
— e.g. grlaely identifies grey and gray.
— e.g. [0-9] numbers, [a-zA-z] letter

— e.g. q["x] matches question, not matchs gxestion, not matches Iraq



http://edrub.in/CheatSheets/cheatSheetStringr.pdf
https://www.runoob.com/regexp/regexp-tutorial.html
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character class shorthand

Equivalant REGEX

ShortHand Meaning

\d numeric digit

\D Not numeric digit
\w a word character
\s white space

[0-9]
[~\d]
[a-zA_Z0-9 ]

[\t\r\n\f]

» Wildcard CGEECFAT) : . matches any single character except line break \r,\n

+ Anchor GiAlIAFY/EAIFF) : match ‘word boundary’ (not the space at the start/end of string).

~ string start, $ string end, \b word boundary, \B not-a-word-boundary position

» Repetition/Quantifier: here X for some regex pattern like CHAR, [] etc.

Greedy * Reluctant Possessive Freq of Occurrence
X? X?77? X7+ 0,1

X+ X+7 X++ >1

X* X*? X*x+ 0,>1

X{n} X{n}? X{n}+ n

X{n,} X{n,}? X{n,}+ >n

X{n,m} X{n,m}? X{n,m}+ [n, m]

Example: Search ‘foo’ in ‘xfooxxxxxxfoo’:

— Greedy: ‘xfooxxxxxxfoo’ found at index 0-13

* Reluctant: ‘xfoo’ found at index 1-4, ‘xxxxxxfoo’ found at index 4-13

— Possessive: no match found (not usually used)

Example: regex match ’aaaa’

* Alternation & Grouping & Back Reference: XA |XB identify XA or XB, use grouping () to set boundary of

XA,XB.

Use \n for back reference the n'™ group. > R. Code

Example: search for immediate repeat word in a sentence

1 | (\b[a-zA-Z]+\b) \1

¢ Lookaround:
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— LookAhead: (7<=X)q
— LookBehind: q(?=X)

6.2.3 Web Scraping

Basic elements of web page:

« HTML (HyperText Markup Language): structure and content of page
» CSS (Cascading Style Sheet): page style.

« JavaScript: functionality, interaction

Basic html document format:

> R. Code

1 |<IDOCTYPE html> # an html document
2 [<html> # html page begin

3 |<head> # head elements declare

4 |<meta charset="utf-8">

s |<title> TITLE OF WEB PAGE </title>
6 | </head>

7 |<body> # html body begin

9 [<h1> HEADING 1 </hi>
0 |<p class='TEST_TEXT'> PARAGRAPH 1 </p>

12 </body>

13 |</html>

We can use elements like <p> or class to extract page information.

[l Web Scraping with rvest.
* pge <- read_html('URL'): page read

Proxy set: Sys.setenv(https_proxy='http://127.0.0.1:7890")

* pge %>% html_elements(css='.CSS_CLASS_NAME')%>% html_text(): basic scraping. use Select-

Gadget tool for help finding proper css label.

Section 6.3 Graphic in R.

6.3.1 R::base Plotting

Plot function in R: : base:
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1 |[plot(X,Y) # scatter/line plot of Y-X

> |plot (FUNC_OBJ, from = , to = to

)
3 |plot (FACTOR) # barplot of factors

) # function plot ranging in c(from,

4 |plot (FACTOR, Y) # boxplot of numeric v.s. levels of factor

s |[plot (DATA.FRAME) # correlation plot

6 |plot (ANY_PLOTTABLE_0BJ) # plot any plottable object

* Plot saving: first open a plotting device, then make plot and close the device

1 pdf("PLOT_FILE_NAME.pdf”, FIG HEIGHT, FIG WIDTH)
> |plot (PLOT_PARAM)
3 |dev.off ()

* plot () plotting parameters:

— main = string for title; oruse title (' TITLE') as the next command
— sub = string for subtitle;
— xlab = , ylab = string axis labels;

— adding [ATgXexpression as text: usemain = expression(PLOTMATH_EXPRESSION),use ?plotmath

to look for possible symbols

— xlim = , ylim = axisrange,e.g. use xlim = c(0,100)
— type = valuetakeninc('p', 'L', 'b', 'o', 's', 'h') for plot type
type ="T type ='s’ type ='p’
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— pch = point character, value taken in 0:25 for defulat point charaters listed below, or use (vector

of) charater to specify, e.g. pch = c(' ')

plot symbols: pch=
005 e10m1520v25

©c1ve6xiteico2
A2X7B12A17022
+3 %8 13418023

X499 n14e019A24

— 1ty = line type, value taken in 1:6 (0 for not shown)

line types: Ity=

4 e e el ie e i e = -

— cex = character expansion, relative size with 1 as baseline and default.

Some derivative function to control size of other plotting elements:

cex.axis = relative size of axis node text
cex.lab = relative size of labels
cex.main = relative size of title

cex.sub = relative size of subtitle

— 1lwd = line width, relative width of line with 1 as baseline and default

— col = color of elements in plot, value examples for color white:

Index: col = 1 predefined colorinR.
Color name: col = 'white', use colors() to see all available color names
Hexadecimal code: col = '#FFFFFE'
RGB code: col
HSV code: col

rgb(1,1,1),col = rgh(255,255,255, maxColorValue = 255)

* ¥ X X ¥

hsv(0,0,1)
col = can accept vector for various colors, or acccept some function for continuous colors:

% Discrete color: col = c('red', 'blue'),oruse col = df$GROUP to color different groups
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* Continuous color function: rainbow (NUM_OF_COLORS), heat_colors(), terrain.colors

(), topo.colors(), cm.colors()
Some derivative function to control color of other plotting elements:

col.axis = color of axis node text
col.lab = color of labels
col.main = color of title

col.sub = color of subtitle

EE . G

bg = color of background

— font = fontused in plot, with 1 = plain, 2 = bold, 3 = italic, 4 = bold italic
Some derivative function to control font of other plotting elements:

font.axis = font of axis node text

font.lab = font of labels

font.main = font of title

font.sub = font of subtitle

ps = baseline font point size, i.e. text size = ps*cex

* ¥ ¥ X X X

family = extra text type, value taken in c('serif', 'sans', 'mono')m etc. use names (

pdfFonts () ) to see possible font families
— bty = box type of the box surrounding the figure. Value takeninc('o', '7', 'L', 'U', 'C'
, 'n')
— las = relation btw. lable and axis. Value taken c(0,1,2,3).

* axis () parameters for axis settings: after using xaxt = 'n' oryaxt = 'n' toremove correponding axis

when executing plot (), other variation of axis could be made by using axis ()

— axis (1) for creating x aixs, axis (2) for creating y aixs. Here we would use z axis in the following

parts.

aixs(1l, at = ) to specify ticks.

', 'Vertical')

plot(xlim = c( , ), ylim = c( , )) for axis limits

plot(log = ) for log transfrom on axis, value takeninc('x', 'y', 'xy').

* legend () parameters:

plot(las = ) tospecifyrotation ofticks, valuetakenin c (' Parallel', 'Horizontal', 'Perpendicular

— x = position oflegend, valuetakeninc("top", "bottom", "topleft", "topright", "bottomleft

", "bottomright")
— inset =

— other parameters are set following the setting in plot. An example:

T 1
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1 |legend ("bottomright", legend = c("red", "green"), 1ty = c
(2,4), 1lwd = 3, col = c("red", "green"))

e text (X_COOR, Y_COOR, labels = TEXT) parameters for adding text in figure. An application is text
(af$x, df$Y, labels = df$Z) to label each point.

— pos = position of text around the coordinate point, value taken in c(1,2,3,4)

* lines() to put an extra line on existing figure (device). Parameters are similarly set as plot ()

» par () to set global parameters. An example to put 3 different figure in the same device:

1 |opar <- par(no.readonly = TRUE) # copy original setting

2 |par(mfrow = c(1,3))

3 [ plot O
4 |plot O)
s [plot ()

¢ | par (opar)

[0 More Charts

* barplot(counts, horiz, besides, ...) forbar plot. Data should be first prepared by counts <-

table (Y_TO_COUNT).
* hist(x, breaks, freq, ...) for histogram.
* plot(density(df, kernel = ), ...) fordensity plot.
* boxplot(x, ...) forbox plot. use boxplot(x ~ GROUP, data = , ...) toplot grouped boxplot

* dotchart(x, labels, groups, ...) tocompare x value for categories

6.3.2 R::ggplot2 Plotting

ggplot2: Grammar of Graphics plot (2nd edi). It provides a convenient way to produce fancy plots. Ref-

erence see https://ggplot2.tidyverse.org/reference/

Basic steps for ggplot2:

1. Specify data and arsthetic mapping
2. Adding ’layers’ with geom_

3. Adding labels

An example:

1 |ggplot (data=mtcars, aes(x=wt, y=mpg)) +

2 geom_point (pch=17, color="blue'", size=2) +
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3 geom_smooth (method="1m", color="red", linetype=2) +

4 labs(title="Automobile Data", x="Weight", y="Miles Per Gallon")

Elements in ggplot?2:

* aes() to specify aesthetic mapping, e.g. aes(x = , y =, col =, ...). Used in ggplot() as
global setting, in geom_() as local override (different geom_() may need different local settings). Ex-

amples:

1 |aes(x = mpg ~ 2, y = wt / cyl, col = am)
2 |#> Aesthetic mapping:

3 [#> % x -> mpg~2

4 |#> x y -> wt/cyl

s |#> * color -> am

» geom_ layer to specify statistical figure you want. Some useful plot:

geom_()  Func- Charts Options

tion

geom_bar () bar plot color, fill, alpha

geom_boxplot box plot color, fill, alpha, notch, width

O

geom_density density plot color, fill, alpha, linetype

O

geom_ histogram color, fill, alpha, linetype, binwidth

histogram()

geom_hline() horizontal line color, alpha, linetype, size

geom_vline() vertical line color, alpha, linetype, size

geom_line() line gragh color, alpha, linetypem size

geom_point () scatter plot color, alpha, shape, size

geom_smooth () fitted line method, formula, color, fill, linetype,
size

geom_violin()  violin plot color, fill, alpha, linetype

geom_text () text annotation see functon help

* labs(title, x, y) tospecify labels and title

* facet_grid() and facet_wrap() to plot multiple plot, with factor levels as categories, parameters:
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facets = facetvariable. For facet_wrap() use ~VAR1 (one variable); facet_grid() use . ~VAR1

or VAR1~. or VAR1~VAR?2 (allow two variable)
nrow = , ncol = grid shape
shrink = whether adjust ticks, set TRUE or FALSE

drop = whether drop levels with censored data, set TRUE or FALSE

* theme () to set fonts, backgrouds, gridlines, etc.

There are some pre-defined theme: theme_grey (), theme_bw(), theme_linedraw(), theme_light

(), theme_dark(), theme_minimal(), theme_classic(), theme_void(), theme_test().

Detailed elements in a plot is adjust by passing element_():

element_line() set some line element
element_rect () set some rectangular element

element_text () set some text element

Some useful command:

plot.title = element_text(hjust = 0.5) adjustposition of title to mid. Other similar param-
eters: plot.background, plot.title.position, plot.subtitle, plot.caption, plot.

caption.position, plot.tag, plot.tag.position, plot.margin

panel.background = element_rect(fill = 'white', color = 'blue') adjustfigure back-
ground and border. Other similar parameters: panel.grid.major/minor.x/y

aspect.ratio = height:width

legend.position = 'none' toremove automatic legend

* ggsave('FILE_NAME', PLOT, WID, HEI), oruse ggsave('FILE_NAME') to save the active device.
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Instructor: Jiangdian Wang

Key focus of reliability data and survival analysis: Study the ‘survival time’ 7" before some ‘failure event’.

Basically the research problem is the distribution of 7', including topics on descriptive statistics, estimation and

hypothesis testing. Further for actual cases, 1" might be censored, i.e. the observe time is not exact; and we may

also wonder the influence of covariants z.

Section 7.1 Reliability Data

The main feature of reliability data is censoring, to be distinguished from the exact numbers in usual statisti-

cal inference. Censor means we cannot observe the exact event time 7. Instead, a censoring time C'is observed,

together with a censoring type, e.g.

Right Censoring: Tctyal > C
Left Censoring: Tpetua < C

Interval Censoring: C; < Tyeppal < Cr

7.1.1 Right Censor Data and Representation

(7.1)
(7.2)
(7.3)
(7.4)

In most parts of this course we focus on right censor data, i.e. dataset contains both event time 7" and right

censor time 7

Event Time: T1,...,T),

Right Censor: Tfr, . ,T,t

Or we could use an indicator J to express whether a time is event (1) or right censored (0):

(T3, 055 2), i =1,2,...n1 + n,

where z; for covariants.
Usually we assume that event and censor are independent 7' 1L C'

214

(7.5)
(7.6)
(7.7)

(7.8)
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7.1.2 Life Table Data

Life table collect survival data at ordinal, uniformly-spaced time points, where each row contains # items at

risk, # events, . . ..

Section 7.2 Survival Model and Statistical Inference

7.2.1 Survival Function and Hazard

Key focus of survival analysis problem is the distribution of 7" (note that in actual cases we need to make
use of both event time 7; and censored data TZ* to estimate the distribution of T"). The distribution feature can be
described in various approaches: PDF f(¢), CDF F(t), Survival Function S(t), Hazard Function A(¢), Cumulative
Hazard Function A(¢):

» Continuous Case: t € Rt

— Survival Function S(t):
Sy=1— F(t) = /t P T 1O} (7.9)

— Hazard Function A(¢) (or in some materials denoted h(t)): mortality at ¢:

PR T<t+hT >t f(t)  dlogS(t)
At) = lim h TSt T dt (7.10)

— Cumulative Hazard Function A(¢) (or in some materials denoted H (t)):

t
At) = / A7) dr = —log S(¢t) (7.11)
0
S(t) — M) _ o~ JiX(r)dr (7.12)
* Discrete Case: t € {t1,t2,...,tn}
— PMF: p(t) is defined on
teT, p(t)e (T —1[0,1]") (7.13)

— Survival Function: Note that CDF F'(t) is right continuous, then S(¢) = 1 — F'(t) is left continuous:

S(t) =BT >t) =) p(ti) p(ti) = S(tim1) — S(ti) = A(t)S(ti-1) (7.14)

>t
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Decomposition of survival function into hazard production

Sit)=P(T'>t)=P(T >tNT >t;), Vt;<t
=P(T > t|T > t;) - P(T > t;)
=P(T > t|T > t;) - P(T > t;|T > tj—1) - P(T > tj_1)

S(t5)

=P(T > t|T > t;) - St
o

. P(T > tj_l)

— Hazard Function A(?):

p(ti) _ ., St

)\(tl) = ]P)(T = ti’T > ti) = S(ti—l) S(ti—l)

U] Properties of survival function and hazard function & More concepts and definition

¢ Mean Survival Time:
fooo Tf(r)dr = fooo S(r)dr
Z?:l tz'p(ti)

Mean Residual Life Time (mrl):

ftoo S(r)dr

mrl(¢t) = E[T — t|T > to] = 50

Considering that 7" > 0 and tlim F(t) — 0, S(¢) has following properties
—00

For independent survival time 77, , T, define 7' = min{77}, 7>}, then

Ar(t) = AL (t) + Aa(t)

Hazard Rate: for two survival r.v. Ty, T5, the hazard rate at ¢

A
hazard ratio(t) = o)
2

7.2.2 Parametric Statistical Inference to Survival Function

(7.15)

(7.16)

(7.17)

(7.18)

(7.19)

(7.20)

(7.21)

Usually the parametric inference is based on a hypothetical distribution, then we conduct estimation using

the parametric distribution, or conduct hypothesis testing on parameter(s).
1 Common Survival Distribution Prior

In parametric model, there are some commonly used distribution models
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* Exponential 7' ~ ()
FE) =A™ (7.22)
F(t)y=1-¢ (7.23)
S(t) =e M (7.24)
dlog S(t)
At)=——2—"=AX (7.25)
H(t) =Mt (7.26)
1
E(T) = (7.27)
var(T) :% (7.28)
e Weibull T ~ W (p, A) = [5()\p)]1/p, degrade to exponential £(\) when p = 1!
f(t) =pAPtP~em 0" (7.29)
F(t) =1 —e (0" (7.30)
S(t) =e~ A" (7.31)
A(t) =pAPtP~1 (7.32)
H(t) =(At)? (7.33)
E(T) :im + 4 (7.34)
(T) =5 [P+ 2) = (0(1 + 2))? (7.35)
var —)\2 P P .
log2]'/?
05 = [ "Agp ] (7.36)
« Gamma T ~ I'(a, \). Degrade to exponential £(\) when a = 1, to 2AT ~ X3, when 2 € N
_ A% a—1_—X\t
F(t) =g~ (a)t e (7.37)
(6]
E(T) =+ (7.38)
var(T) =3 (7.39)
* Log-Normal T' ~ LN(u, 0?) = exp [N (u, 0?)].
_ g
ft) =———— (7.40)
F(t) = (log(t_“)> (7.41)
g
S(t) =1—® (k’g(t_“)> (7.42)
g
E(T) —eit (7.43)
var(T) 262"+”2(e"2 -1) (7.44)

"Weibull distribution could also be parameterized as W (p, ), where v = 1/ is the scale factor.
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* Generalized Gamma 7' ~ GG(«, p, A), degrade to Weibull when a = p, to Gamma when p = 1

_ a—1,—(xt)? o _
1(t) =pA(A) /TC) (7.45)
E(T) :W (7.46)

O Likelihood for Censored Data

When dealing with censored data, we put a basic assumption that 7' || C' so that we can consider their

distribution separately:

f(t) fr(t) fe(t)
F(t Fr(t Fo(t
General Notation: (¥ T: r(f) C: c(®) (7.47)
S(t) Sr(t) So(t)
A(t) Ar(t) Ac(t)
Probability that we observe either 7" or C, or equivalently observe (T ,0):
- t)Sc(t), case event
B(T.5) = fr()Sc(t) (7.48)
fo(t)Sr(t), case censor
= [fr(®Sc )]’ [fe(t)sr(t)]'° (7.49)
ocfr(t)°Sr(T) =0 = Ar(t)°Sr(t) (7.50)
Likelihood for estimating survival S(t) can be taken as the part of 7":
L(6;1,9) HfT t:;:0)%Sr(t;;0)' % = HAT £:;0)% S (t;;0) (7.51)
=Hﬂmmﬂsmm (7.52)

ecf reR

where £ denotes indices of event data, R for indices of right censored data. This form can be generalized to

more kinds of censoring, e.g. left censor £, interval censor Z = {(t;;, ti )} 2y

L(0;%,6) = [[ f(Ee;0) [] SGsO) [T 1= SGE:0)] ]  [SEa30) — S(Ei: )] (7.53)

ecf reR lER (ti_yl,tm)EI

then use proper methods to maximize the Likelihood / conduct hypothesis testing. Following are some

knowledeg recap for inference concerning likelihood:

O Likelihood Function
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Knowledge on likelihood function see section 2.2.4 ~ page 47. Some recap:

Likelihood: L(0; X1, Xs, ..., X,) = [ [ £(X:;0) (7.54)
=1
Log-Likelihood: £(0; X1, X,..., X,) = Y _log{f(X;;0)} (7.55)
=1
. 00(0; X1, Xo,..., X)) ~=0log{f(X;;0)}
Score: U(0; X1, Xa, ..., Xp) = 5 = ; . (7.56)
: o Plog f(X;0)| ?log f(X;:0)] -
Fisher Information: I(¢) = —E [(W =-—nEy [W] =nl(0) (7.57)
= 9 log f(X4;0)
I=1(0) =-E [aeaeT] (7.58)
. "L 9% log f(X;:6)
Observed Information: I,,(0) = J(0) = — Zz: —5000T (7.59)
Note: Fisher is an expectation of function of r.v., not random.
Properties:
Eg [U(@;X)} —0 (7.60)
9% log f(X;0)
I(0) = - Eg [W (7.61)
. [o10g£(X:0) dl0g £(X50)| . T
—E ¢ T o =Ry [U(&,X)U(@,X) } (7.62)
N N N N N T
var g [U(@;X)} :E)—(»KU(Q;X) ~Eg [U(@;X)]) (U(@;X) ~Eg [U(@;X)D } (7.63)
—E _U(@;X)U(@;X’)T} — 1(6) (7.64)
(7.65)

By CLT, considering U as a function of r.v.: (for a given 6 and the data generated from the distribution with

this parameter 0, i.e. U(0) = U (0; )_('(0)))

_ Lue S no, 19, (7.66)

Va{U(0) ~EUe)} = - .

and by taking MLE estimation OMLE Py g* \e can estimate the distribution (Note that MLE Estimator
requires U (0) = 0)
J6)72 (U0) - EW@)) = J(6)"2U @) % N0, 1) (7.67)
O Statistical Inference on Parameter ¢

Statistical Inference concerning 6 can be conducting using the above functions of 0

* Score Test: Use the distribution of score function directly: we can construct

J(60) /20 (60; X (9)) = N(0,1) (7.68)

0
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explanation: under Hy : 6 = 0y, we should have 60— 0= 6, which would lead to
J(60)""/2U (60; X (60)) & N(0,1) (7.69)

however if § — 6 = 6, then

E [U(@O;X’(Q))] £0 (7.70)

which would lead to a different distribution, thus we can test the assumption Hy : 6 = 6y using equa-

tion 7.68 ~page 219. Conduct hypothesis testing utilizing the fractiles of N (0, 1)

Wald Test: Use the Taylor Series of U(6) to the 1% order
U(6) ~ —J(0)(6 — ) = J(6)/2(0 — ) = J() 12U (6) S N(0, 1) (7.71)
ie.
0% N, J6)) (7.72)

which can be utilized to construct testing statistics/interval estimations.

Likelihood Ratio Test: Use the Taylor Series of £(6) to the 2" order, and take 6 = §MLE 5o that ¢/() =

00) ~ €(0) — =(0 — O)TT(0)(0 — 6) = 2(£(0) — £(0)) ~ (6 — )T T () (6 — H) X2 (7.73)

l\D\»—t

where p is the dimension of 6

€(0)

score test

wald test

7.1: Tlustration of Tests on £(#)-6 Plot

7.2.3 Non-Parametric Estimation to Survival Function

In this part we only focus on right censor data (’f}, di), 0; = 0 for right censoring.

[J Kaplan-Meier Estimator

Idea of KM Estimator: Separate time into segments by censor/event time ¢;, and decompose survival function
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into products of hazard within segments, using equation 7.15 ~page 216 which is:

S =P >t)=][P(T > t:|T > t;1) (7.74)
i<t
=BT > 4T > ) [] [1 Pt >T > ti|T > ti1) (1.75)
i<t
- (1 - X(ti)> t1_<It (1 . X(ti_l)) (7.76)
=11 [1 - X(t;)j (1.77)
ti<t

where S\(tl) are relatively easy to estimate with censoring considered. r; for # at risk: not censored/event till

t;, d; for # event (death). We can model \; as

and obtain the MLE estimation of 5\1 i, d;?

Ni :7 (7.80)
var(A;) :mr(fz') = A(lT_” (7.81)
S =T] [1 - ;\(ti)] =11 [1 - ‘j] (KM Estimator)

Bt <t
var(S(t)) =var {exp [1og S(t)} } (7.82)
~[S()Pvar [mg S(t)} (7.83)
=[SOy var [1og(1 - m] (7.84)

ht

:[S<t)]2tizﬁ(1ji2m(xi> (7.85)
=[S(t)]2 2 (ridi o (Greenwood’s Formula)
:[S(t)]gva;(ﬁ(t)) (7.86)

Interval Estimation of S (t) can be conducted using pointwise interval/confidence band:
* Plain pointwise approach:

S(t) £ Ni_ao[S(1)] (7.87)
« Log-Log pointwise approach (&. default): using L(t) = log [— log S'(t)} = log [A(t)}

eﬂ:Nl_%a(i(t))

S(t) x (7.88)

“Here we use the A method for estimating the variance of function of r.v.: if X ~ f(u,c?):

9(X) =~ g(p) + g (1)(X — p) = var(g9(X)) & [¢' (w)]*var(X) + [g'(X)]*var(X) (7.79)
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where
) 1 d;
T oS 22 mlr - ) 7:9)

» EP confidence band approach
* HW confidence band approach

Estimator of mean survival time:

fir = /0 ' S(t)dt (7.90)
2 .
t K3 (2 3

[J Nelson-Aalen Estimator

Idea of NA Estimator: estimate f\(t) first, then obtain Fleming-Harrington Estimator Sz u(t) = e A

. . d;
A= "At:)=>_ - (7.92)
ti<t ti<t "
var(A(t) =Y m (7.93)
i<t PV T
Sru(t) =exp [fA(t)} (7.94)

00 Survival Function of Life Table
A key difference of survival data of life table is that we cannot know the exact event time/censor time,
locating in [¢;_1,t;), in this case we usually estimate d;, r; using

d, =d; (7.95)

vl =r; — % (7.96)

where ¢; is # censor in [t;,t; 1), r; is # censoring at the begeinning of interval, i.e. t;_1. And construct KM/NA

estimator:

Skm(®) =]] (1 - i) (7.97)

var(Sica) =[S 0] 3 " = ) (7.98)
t<t i\d
Albmiai) = =g 5 = = 7.99
(tmid i) St (ti—ti)(— %) (ti—tiq)(r; — GEh) (7.99)
ti1+t;

7.2.4 Hypothesis Testing to Group Comparison

Key focus: how to judge the difference between two survival function S;(¢), S2(t), or even when there are

more than two groups.

0 Mantel-Haenszel Logrank Test 3

>Note: Log means ‘time record” here, rather than logarithm.
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Idea of logrank test: adapt contingency table to censor table

2 7.1: 2 x 2 contingency table

Event §
Group Yes(l) No(0) Total

0 do ro — do To
1 d1 T — d1 T1
Total d r—d T

* Recap: Pearson’s x? test: assign n sample into & groups, and conduct test on p;, i = 1,2,...,k, denote

that v; samples are assigned to the i groups, then

k
K, = Z —npi) LG (7.100)
=1

In the above example, df = k — 1. In 2 x 2 contingency table, df = 1 because we assume d, r, 1o, '] are

fixed. Pearson’s x? statistics for 2 x 2 contingency table:

Z (obs — expe)?

Xp = (7.101)
4 grids expe
dy — ro2)?
zw +ete (7.102)
7’0;
2
[do — 79 d] 2
~ 7.103
rorld (r— / )/r3 X1 ( )
* Recap: Mental-Haenszel test, based on the Hypergeometric distribution that
d
E (do) =To—
do ~ H(To, d, T‘) = Trorld(T _ d) , dyi,r9 — dy,r1 — dq similar (7.104)
var(dy) = —5———"
r2(rg — 1)
and construct
2
_ 2
Xn = (Ziobs “EC) iy o] % (7.105)
MH = = — =~ .
2 4 grias var (obs) ol
X?\/[ g and X%g are equal for lare .
r—1
Xt = ——Xp (7.106)
* Cochran-Mantel-Haenszel log-rank test
Forsurvival dataty, ts, ..., tx, we can construct a contingency table C; at each time, and test on the K x2x 2

contingency table sequence:
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% 7.2: 2 x 2 contingency table, j = 1,2,..., K

Event §
Group Yes(l)  No(0) Total

0 doj 7’0]‘ — doj Toj
1 dlj 7’1]‘ — dlj le
Total dj rj— dj T
and get the CMH statistics for testing Hy : 0y, = 0, = ... = 0, = 1, 0 for odds ratio between group 0/1.

2
K d;
) [Ejzl(d()j —70j77)
XCMH = S Tom1yds (1 —d)
J=1 r]z(rj—l)

~ X3 (7.107)

where the K contingency tables are treated independent, but they are still ordinal beacuse r; contains in-
formation of history d¢, <¢;, ct;<t;
Properties & Special Cases & Extension of CMH logrank test:
* No tied death d; = 1:
K dns dj 2 K dn dj 2
>_j=1(doj — 7o Tj) 2 j=1(doj — TOJTj)

2 _ _ 2 .
XCMH = K T‘Qj’l"udj(’f‘j-dj) o EK 05715 ~ X1 dOJ € {0’ 1} (7108)
DD R =1

* Intuition of obs — E (obs):

obs — I (obs) ~do; — dj% (7.109)
J
=TT (R, - Ay (7.110)
rj

* Attach weight w; > 0,1 =1,2,..., K to C;:

d;\1?
) [ij'(zl w;(doj — ?”Ojrj)]

XCMHw = ZK 27”0]7"17d (rj—dj)
=175 2 (r-1)

~ X3 (7.111)

by choosing differnet kinds of weight w7 we could get variants of CMH test.

— w; = 1 for log-rank test. Focus more on difference at large ¢

— w; = r; for generalized Wilcoxon rank sum test. Focus more on difference at small £.
Note: weighted log-rank test should be used when no cross btw. S (¢) and Sz (). Kink-of-Weight to choose
depends on H;.

[0 Generalized Wilcoxon Rank Sum Test
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* Wilcoxon Two-Sample Rank Sum Test: Knowledge of Wilcoxon two-sample rank sum test see section 2.4.6 ~ page 65.
Recap: to test the distribution difference of X = (X1, Xo,...,X,,) and Y = (Y1,Ys,....Y,,), we mix
them together and rank as 7= (Z(1), Z(2), - - - » Z(m+n))- Rank of X;:

R; =rank(X;)inZ, i=1,2,...,n (7.112)
R=> R (7.113)
i=1
A rank sum statistic to test:
—E
R-E(R) N(0,1) (7.114)
var(R)
1
E(R) n(m+n+1)
mn(m+n+1) (7.115)
var(R) = 1

Rank sum statistic can be written in a Mann-Whitney form that can be generalized:

+1 ,case X; > Y
n,m
Uj =U(Xi,Y)) =40  ,case X;=Y;, U= Uy (7.116)
2
-1 ,case X; <Y

m+n+1)

n( U
R . v (7.117)

* Mann-Whitney-Wilcoxon rank sum test for censored data:

Notation: we still mix X = {(¢1;,01;)}"., and Y = {(¢2;, b27) }7Lq to get:

Zonix = {({1,00)} 0" (7.118)

and the Mann-Whitney form for Z;x:

+1 ,caset; >fj, 0; =1
UZj:U(Zth)E 0 ,CaSCtNZ‘:thOT(Sj:Oa 22172,am+n]:15257m+n
—1 ,casel; <ij,0;=1

(7.119)

and the Extended Wilcoxon rank sum statistic:

m+n m+n

w= Y > Uy (7.120)

iif Z;eX j=1
Under Hy : X ~ Y, distribution features
E (W) =0 (7.121)
m+n [ m+n

var(W) = T r— z; ; Uy (7.122)
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— choose w; = r; in weighted log-rank test, and nominator becomes

K

K
d.
> rildo; - TOjﬁ) = [(r1j — dij)do; — (ro; — doj)day) (7.123)
j=1 7o =1
K
- Z [y sty X Hx=t; — Hxst; X #y—y] (7.124)
j=1
=fy>x — H#y<x (7.125)
=-W (7.126)

in which X?Ui:”’ v g testis the same as generalized Wilcoxon rank sum test.

Section 7.3 Survival Model with Covariants

To research on the dependence of 1" with regard to covariants z. Survival data with covariants: X =

(tNia 62'7 Zi)

7.3.1 Cox’s Proportion Hazard Model

Basic assumption on dependence form: 7" hazard part and covariants part are Separatable:

A(t]2) = Xo(t)g(2) & S(t]z) = [So(t)]*®,  So(t) = e JoPo(ar (7.127)
further a linear form g(z) = 57 z is used;
A(t[2) = Mo(t) exp [T 2] (7.128)

Basic Assumptions of Cox’s PH Model:
* constant regression coefficient (;
¢ linear dependent of covariants 3’ z;
 exponential link function e’

in this proportion hazard model, the ratio of hazard only depend on f:

)\Zz(t) _ AT .
log{ WE } =0z |t (7.129)

The unknown components are \o(t), 3, where the \o(¢) lies in the dim — oo space, and causes difficulty
in conducting inference. Solution: decompose full likelihood into two parts, in which one of them, Partial

Likelihood Lpy(3; X) is only function of 3:

. K3
3

L(B, \o(); X) :H [(Ao(ti)eﬁ%i)é (e, Jo! /\O(T)dT>e/3Tzi] 7130

=Lpn(B; X)Lres(B, Ao; X) (7.131)
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and we could focus on L py for further inference.
Note: the feasibility of partial likelihood comes from the form of proportion hazard.
O Partial Likelihood without Tie
Derivation: First we assert ¢; in ascending order and without tie: t; < t5 < ... < t,, and we use an discrete

estimated form of \o(¢;) = A

%

/ . Ao(r)dr = Y ) (7.132)
0

Jj=1

then we could use a trick to reformulate £(3, A1, . .., A,; X) as*

(B AL An) =D S Gilog Ai + Bz) — > Nje™ (7.134)
=1 =
= Si(log Xi + B'z) = \i Y e (7.135)
i=1 =1

and use MLE with regard to \; to get an estimate to \;:

OB M) _ 5

= Wi 7.136
o, T (7.136)

* Illustration for Z i Z 7 = Z Z Aje? 7 (Abel’s Lemma for Summation by Parts)

i=1 j=1
he™ o Shhe
Are?'z2 Aae?'22 32 Nt
Are”= Aae's Ase'% D HEPIT (7.133)
. . . — .
Areen dae” Ase I e e e

3/ 2 1'1, B'z; 3 25 n n T2i n i 'z
My e” T X, DD P VD DI ID DD YD DI D DHIND DD VI

Jj=1 Laj=2
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then we could get the partial likelihood

n S S s
LB, M(B), -, An(B)) = [[ Ma(B) e’ te 2im (7.137)
i=1
n ’ 52‘
—=e 27, 2 H L (7.138)
1 \ itz €
o) =] (= ' (7.139)
- i=1 ertj >t; ef'% '
PL=> "6 |Bz—log| Y €% (7.140)
=1 | j5tj2ti
| Sty 7€
UB)=> 6 |z — 2= — (7.141)
,L'Z:; L Zj:tjzti eﬁ ’
B ’ 2
a = P’z Dottt 2l
J(B) =) o = |~ (7.142)
; thzztz Zl:tlzt‘j eﬁ ! ! Zl:tlzt]' eﬁ !

The above statistics can be use for further inference.

J(Bo)~2U () < N(0,1) (7.143)
(B = Bo) = N(0,J(B)™) (7.144)
20(8) — £(8)) S X2 (7.145)
[J Modification for Partial Likelihood with Tie /
There are various modification for tied data case. In PL without tie, the Lﬂ,z term are usually

Zj:tj >t er
changed to adapt for the case of. Intuition:
B'zi At 2)
e il % .th B
— = ~P (z event|lout of #{j : t; > t1}> (7.146)
Zj:tjzti ez Zj:tjzti Atj12) !

Notation: R; for all datapoints at risk at time ¢;, D; for event cases at time ¢;, D; C R;

¢ Cox’s modification:

eZleDi B/Zl
P <Di events‘|Di|out of #{j 1 t; > ti}) - (7.147)

ezle’Dj B'zj
all possible |D; |=|D;|

drawback: ~ O(|D;|!) complexity

eZleDi B’z
rLB) =]] (7.148)

ZZGD~ €D, p1
Zall possible |D;|=|D;| € QONES Bz

n
=1

* Breslow’s approximation:

eZlgDi 6,Zl
P (Dievent’ﬂ?i\out of #j 1 t; > ti}) ~ o (7.149)
(Xier, €”™)
or directly write the PL as
n 6612]
PL(B3) = H (7.150)
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 Efron’s approximation: usually better than Breslow’s, default method in coxph ()

n eZle’Di B/Zl
PLB) =]]{ = — / (7.151)
=1 | L= (Zlem 7% — {51 Lien, ¢ Zl)
[l Extension for Time-Dependent Variable
Model:
At) = Ao(t)eP#®
() ) (7.152)
At) = Ao(t)eP®)'z
0] Diagnostic Methods for PH Assumption
* log-log plots: for categorical 21, 25, use relation
log [~ log S(t, 21)] — log [~ 1og S(t, 22)] = B'(21 — 22) Lt (7.153)
Plot of log [log S(t, z)} should be ’parallel’ curves.
* Check the coherence bet. observed data v.s. expected data.
* Goodness-of-fit using Schoenfeld residuals
T =2 — Z 2k -p(ﬁ, Zk) = 2;Z; (7.154)
JER;
(Bo) —m (7.159)
P\Py2k) = =55, .
ZjGRk 6/3 “
* (Generalized) Cox-Snell Residual for overall goodness-of-fit:
Recall: forrv. T~ f(t), S(t) = [ f(7) d7. function of r.v. has distribution:
S(T) ~U(0,1) = A(T) ~ (1) (7.156)
define Cox-Snell Residual:
A(z) = —log S(z) (7.157)

the set {A(z;)} could be viewed as a sample from (1), we could test on the distribution, e.g. plot the

cumulative hazard of residual v.s. residual to check A(e) = e.

* Delta-Beta Residual for infulential: for 8 = (8y = 1, f1, . . .), define
Ay =Bj - Bitni) (7.158)

where Ai for estimator with the i subject removed. Plot the scatter plot of Aij to locate influential.
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[J Experiment Design for Log-rank Test under PH Assumption
Question: how many events are needed for the testing Hy : § =0 «~ H, : 58 = 3,2

Using log-rank statistics equation 7.108 ~ page 224 in z-test form, under condition 1. no ties d; = 0,1, 2.

f3, is small enough for taylor expansion:’

K d
2 =1 <d0j —Toj r)
Tevu = -
/K ro;r15d;(rj—d;)
Jj=1 1’]2.(7’3-—1)

where d = ) j=1dj, 0 is the prevalence of group 1.

4 N(Ba/do(1 — 0),1) (7.160)

Power of the test: denote vy for probability of type II error
P (Temu > NojolHa) =1 —7 = = Ba/dO(1 — 0) = Ny o + N, (7.161)
Minimum number of events:
(Na/Q + N’Y)2

d = W (7162)

7.3.2 Accelerated Failure Time Model
Basic form of AFT Model (Accelerated Failure Tome Model) for categorical covariants:
S(t;z=1)=S(yt;2=2) < P(Ty >t) =P (Ty > ~t) (7.163)

Usually we attach some assumptions on function form of S(¢, z), usually take (parameter denoted «):

* Exponential:

S(t) ==, A1) =\ (7.164)
1
=t = Y log S(t) (7.165)
! 1 !
=y =eti= 1= e P (7.166)
i.e. Exponential AFT model in which v = e is equivalent to PH model with A = e?'z and B = —a
* Weibull:
S(t) =M A(t) = AptP! (7.167)
1
/ 1 !/
o0z — o B'2/p
=y i=e%? = N e (7.169)

i.e. Weibull AFT model with v = e®'# is equivalent to PH model with A\ = e?'Z and B = —ap

SProof key:

705 Ao

o 7.159
r0j Ao + 115 A0€Pa ( )

doj ~ B(poj), poj =

and at small 3., take approximation 6 & ry; /7;
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* General Case: In different groups z, survivial time

T; =Toe®#+ei/P ¢ v (1) (7.170)

Si(t) =P(T; > t) (7.171)

=P <log To + o'z + % > log t> (7.172)

=S. (1) (p(logt —log Ty — o'z;)) (7.173)

[0 AFT Model and PH Model

An intuition for parameters in AFT model and PH model:

PH : \;(t) = A\o(t)e™
AFT : Az(t) = )\0(8777‘%)@77”

Baseline = PH = AFT

2.0
1.5 -
= 1.0 A
0.5 —
00 -

T T T T T 1

0.0 0.2 0.4 0.6 0.8 1.0

Usually AFT model depends on a parametric model, whlie PH model only depends on the PH assumption.

> R. Code

An example:

factor (enum), data = bladder?2)

1 | coxph(formula = Surv(start, stop, event) ~ rx + number + size +




Chapter. VIII E#51HF#LIL B2

Instructor: Tianying Wang

Biostatistics is discipline to apply statistical methods to biological problems, including medicine, biology
experiment, public health, etc. This section would focus on basic quantative skills to be used in advanced bio-

statistics research.

Section 8.1 Factor Model and ANOVA

A major question in biostatistics is to study the difference between groups, i.e. explanatory variable X is
categorical. A ‘way’ to conduct grouping is called a factor , e.g. {«;} where each i correponds to a level of the

factor.

To compare groups, e.g. to determine whether there is significant difference between Y of each group,
ANOVA is used. The key thought is to analyze difference value and variance and see whether the difference is

large enough to ‘exceed’ variance.
U Factor Notation

Response Y is denoted by its subsript to declare its group and index in this group, e.g. Y;;; indicates it is

the I sample in group (i, j, k)

8.1.1 Single Factor Model and One-Way ANOVA

[0 Cell Means Model

Yij = pi +¢eij, eyiid. ~ N(0,0%) 8.1)

Estimation target: juy, ..., fir, 02
Hypothesis testing Ho: p1 = ... = p, = p, v.s. Hy :atleast 1 y; is different.
232
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Estimation:
1
=Y, = — Yi; (8.2)
n; “
7=1
1
2 2
S = ;(Yw Vi) (8.3)
2 _Zzzl(ni - 1)5% _ Ezzl(m - 1)512
s = Id - (84)
dimi(ni—1) nr—r

Key of ANOVA: Decomposition of variation SS:

SST:ZE(E]—YV:ZE(%—E* - Y. (8.5)

i=1 j=1 i=1 j=1
T N4 T
=D+ (Y~ Vi) ) (Vi - Y (8.6)
i=1 j=1 i=1
=SSE + SSR (8.7)
O Effect Model
Vij=p+ao;+eij gjiid ~ N(0,0%) (8.8)
Estimation target: y1, aq, ..., ap, 02, Wrt. > i_; o = 0.
Hypothesis tesing: Hy: a1 = ... =«a, =0, v.s. Hy :atleast1 o; #0
Estimation:
LG LY
Yy 39
T - n;
i=1 j=1
1 &
& =Y —ji=—> Y- p (8.10)
NG “
7j=1
1 &
2 >\ 2
j=
82 :Z;;:l(ni - 1)812 (812)
nr—r

8.1.2 Fixed Effect and Random Effect

When divided into groups/naturally assigned in groups, we need to specify whether the factor levels are

specially chosen (fixed effect) of randomly chosen from a ‘population of levels’ (random effect).

» Fixed Effect: whether there is a difference between / estimating the value of mean value p; of each specific

levels
* Random Effect: whether the overall behaviour of 1; comes from a ‘random distribution’

Comment on fised / random in actual model building and statistical inference:
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» whether a factor is fixed or random should be determined by how the data are obtained and the research

problem to be studied, i.e. determining fixed / random model does not come from mathematics.

« for effect of interaction term, say (c3);; as the interaction effect of factor o; and /3;, then («3);; would be

random once one of o; or 3; is random.

Here use a one-way factor model as example:

O Fixed Effect:

Vij=p+ao;+eij ejiid ~N(0,0%) (8.13)
Estimation target: /1, a1, ...,y 02, Wrt. > i_; o = 0.
Hypothesis tesing: Hy: a1 =...=a, =0,v.s. Hy ratleast 1 a; # 0
Estimation (the same):
R 1 roon; sz‘j
=1 j=1
1 &
Gi=Yi—ji=—3 Y- (8.15)
n; =
2 1 < o\ 2
s; = (Vij — Vi) (8.16)
n; — 1 .
7j=1
82 :Zzil(ni - 1)87,2 (8 17)
np—r )
ANOVA table:
Source of Var  SS dof MS E (MS)
_ _ SS r )
o SSa=Tm(V-v) ro1 S0 gy damml
r— r—
. SSE
o? SSE = Y1, 0, (Vi = Yi)? mp—r o
nr—r
F statistics for Hy : oy = ... = o, = 0
MSa
F - WSE ~ FT*LTLT*T‘ (818)
0 Random Effect:
Yij=p+ai+ey apiid ~N(0,02), ejiid ~ N(0,0%) (8.19)

Estimation target: u, 02,02

Hypothesis testing Hy : 02 = 0,v.s. Hy : 02 # 0
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Estimation:
o 1 TN Y;j
== Z > (8.20)
i=1 j=1
R 2
2
P Z (Vi - Y2.) (8.21)
7j=1
r i —1)s?
32 27,:1(/”’ )87, (822)
nr—r
1 E
52 =1 ( SSa. SS ) (8.23)
r\r—1 np—r
(8.24)
ANOVA table:
Source of Var  SS dof MS E (MS)
- _ SS
o2 SSa =37, n; (Vi — ¥.)° r—1 % o+ no
. SSE
o> SSE=Y, N, (Y - Vi) np v o2
nr—r
F statistics for Hy : 02 = 0:
MSa
=——~F 10 8.25
F MSE 1ng ( )
8.1.3 Two Factor Model and Two-Way ANOVA
Two factor model with interation term:
Yijk = n+ ai + B + (aB)ij + €iji (8.26)
Yijp — Yoo = (Y. = Yo) + (Y. = Y) (8.27)
+ (Yij. = Vi = Y + Y.) + (Yijr — Vij.) (8.28)
a; + B + (aB)ij + i = (1 + i) — ) + (1 + B;) — 1) (8.29)
+ ((p+ i+ B+ (aB)ij) — (0 + i) = (1 + B5) + 1) + () (8.30)

Here for convenience and clarity, when applying model with more factors, we use terms like (a3);; to avoid

confusion of too many symbols.

8.1.4 General Case for Factor Model

e.g. three factors model

Yijki = b+ i + Bj + vk + (aB)ij + ()i + (B7)jk + (aBY)ijk + €ijrl

(8.31)
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[J Montgomery’s Method for Restricted Model
Montgomery describe a useful trick to form the ANOVA table and to find correponding E (MS) (EMS), and

finally help construct proper £ statistics. Here an explicit example of three factor (1F+2R) model is provided to

illustrate the procedure.

Model we use here as example:

Yijet =t + o + B + vk + (B)ij + (a7)ix + (87)jk + (@BY)ijk + Eiji (8.32)
i=1,2,.. .a (8.33)
j=1.2.....b (8.34)
k=1,2,. ..c (8.35)
[=1.2,....n (8.36)

where a is for fixed effect, b and c are for random effect.

model parameter:

0={u, aﬁzl’""a,ag, 03,035, Ji,y, J%w 0357,02} (8.37)

1. Prepare the framework of the EMS table, including:

* column: list groups, and their random/fixed, and their number of levels.
* row: terms in the model

. written as €;x);, i.6. random term index excluded from the bracket.

Random/Fix F R R R
# level a b ¢ n

Index i 7 k1 E (MS)

Q;
Bi
Yk
(aB)ij
(ay)ik
(BY)jk
(B7)ijk

2. For each row, copy the number of observations under each column subscripts, if the column subscript does
not appear in the index subscripts of the term. e.g. («f3);; does not contain, &, so fill in the grid ((« )5, k)

with ¢, and fill ((af3);5,1) with n.
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Random/Fix F R R R

# level a b n
Index i 7 k1 E (MS)

Q; b n

Bj a n

Yk a b n

(aB)ij n

(a7)ik b n

Bk« n

(aB7)ijk n

S (igh)l
3. 1is filled in the row of error term (&), *)

Random/Fix F R R R

# level a b ¢ n
Index i 7 k1 E (MS)

Qo b ¢ n

Bj a c n

Yk a b n

(aB)ij c n

(ay)ik b n

(BY) ik a n

(aB7)ijk n

ey 1 1 1 1

4. for remaining grids, fill 1 if the column is Fixed, or

if the column is Random
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Random/Fix F R
# level a b ¢ n
Index i J k1 E (MS)

o 0 b ¢ n

Bj a c n

Vi a b n

(aB)ij 0 c n

(ay)ik 0 b n

(B7)jk a n

(@Bv)ijk O n
e 1 1 1

5. Now the L.H.S. of the table is finished. To get the E (MS), we will need the coefficients in front of the

variance term'. The approach is as follows: use the fourth row (af3)i; as example:

* (e.g. focus on row (af3);5)
(a) ignore columns with the same indexes, here it would be column ¢ and j
(b) select rows with the same or more extra indexes, here it would be row (a8)ij, (af7)ijk» €(ijk)
(c) now the grids to be used are colored brown

(d) for each row, multiply all used grids to form the correponding coefficient (of the variance of this row),

here it would be

E (MS(QB)) =c X /1035 + 1 x ’“72467 +1x1lo2=0%+ (-zmi s + ””i . (8.38)

Random/Fix F R R R

# level a b ¢ n
Index i j k1 E (MS)
, 0 b 2 4 2 4 bnol 4+ no. +b > 9;
(07 C n g CnO’aﬂ no'a,y no'aﬁ,‘/ Cnm
Bj a 1 ¢ n o+ cma%7 + acnag
Vg a b 1 n 0%+ anag,y + abna%
(af)ij 0 1 ¢ n 0?2+ cno?, +no2,
(ay)ik 0 b 1 n o? + bnag,y + naiﬂv
(BY)jk a 1 1 n 0%+ cma%ﬂ/
(aBv)ijk 0 1 1 n o + ”0357
Eijk)l 11 1 o?
o

"Note the variance term is what we already know: for fixed effect it would be T for random effect it would be UZ
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6. Now we can use E (MS) to construct correponding F™*. e.g. to test Hy : v = aig = ... = g, We use:
E (MS,) =02 2 4 bno? 2 e i 8.39
( Oc) =0 +Cn0'a13+ TLO’a,},‘FnUaﬁ,Y‘i‘ Cnﬁ ( . )
E (MSqp + MSay — MSus,) =07 + cnoi g + bnoy, + nojg, (8.40)

«  MSy + MSys,

% TMSp £ MSy, L lamDHam D (b-D(e-1), e-) =D+ a1 (841

8.1.5 Diagnosis

Some useful diagnosis to check assumptions:

* Levene’s Test for homogeneity of variance: > R. Code

1 |dat %>% group_by(cat_1) %>% rstatix::levene_test(y ~ group)

» Shapiro-Wilk Test for Normality: > R. Code

1 |dat %>% group_by(cat_1) %> rstatix::shapiro_test(y)

e Qutlier test: > R. Code

1 |dat %>% group_by(cat_1) %>% rstatix::identify_outliers(y)

8.1.6 Miscellaneous Topics

Some miscellanea in design of experiment and about some advanced models:
O Crossed and Nested Factors
In multi-factor studies, we may not be able to go through all possible factor settings.
* Crossed factor: all level combinations are covered in the experiment.

» Nested factor: the levels of one factor are unique to a particular level of another factor.

0 Longitudinal Study

. . t={t1,....tr} - . . e
When discrete time is used as factors, say 7, {ttr} in Y;;; where ¢ for treatment, j for individuals, we

may notice that response Y;;; is effected by individual baseline, in such case we cannot use the ordinary factor
model to study the difference of trent. Instead we would use longitudinal study to construct model and study the

trend.. e.g.
Yijt = p+ o + By + 7 + €4t (8.42)

where J3;;) stands for indivudual difference (say, with assumption S3;(; ~ N (0, a%))

Section 8.2 Statistical Inference on Contingency Table

Contingency table is an easy way to display categorical variables, an example:
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7 8.1: A 2 x 2 contingency table
Variable Z
VariableY D D Total

E ni nio ni.
EE no1 noo no.
Total ny  N.o n..

8.2.1 Quantities and Statistics from Contingency Table

L] Prospective Study and Retrospective Study

Contingency table itself is symmetric w.r.t. Y, Z, but in experimental design we usually first specify and
divide groups, and then conduct experiment (prospective) or conduct survey (retrospective), which would cause

different conditional probability. An example in studying the effect of medicine

* Prospective Study: say, Y = FE / EC for drug / placebo group is assigned before experiment, and then Z =
D / D for medicine effect is studied after treatment.

In this case n1., ns. are pre-determined fixed number.

Such design is a well-controlled experiment to study the effct, but sometimes faced with problem concerning
survival analysis, see Chapter 7 ~page 214 for detail. And for some problems like, e.g. Z is related to rare

disease, this method is low-efficient.

* Retrospective Study: say, some Z = D / DE for medicine effect patients are selected, and then their history

of taking drug or not is collected.
In this case n.1, n.o are pre-determined fixed number.

This method is quick and convenient to conduct study, but usually we cannot control the exposure status Y’

accurately (because they are collected by, e.g. questionnaire)

Statistics and tests should be selected based on the data collection design (prospective/retrospective) be-
cause of different probability condition.
(] Statistics and Estimation

With respective probabilities in two groups E, EC denoted as
m=P(D|E),  p=P(DIE) (8.43)

we usully focus on the ‘difference’ between group £ and EE, there are some quantities to help measure the group

difference:
Risk difference: A = p; — po (8.44)
Relative risk: ¢ = pl/pg (8.45)
1—
Odds ratio: 6 = M (8.46)

p2/(1 — p2)




Tuorui Peng CHAPTER 8. A4 %it it 3io 241

Their estimation:

* Respective probability p1, ps:

. nii
pP1= H
P ive: : .
rospective ) g, (8.47)
p2=—
no.
plL
A~ n.
T
Retrospective: N (8.48)
A _ n.g
T aE
where p is the prevalence btw D, DY in natural condition (8.49)
* Relative Risk ¢:
. . nn/ ni.
Prospective: ¢ = (8.50)
no1 / no.
S U
Retrospective: ¢ = — (8.51)
P2
* Odds Ratio 6:
Prospective&Retrospective: 6 = s (8.52)
n21M12
which is the same in either cases.
variance of @: estimated at (n11, n12, n21,n22) ~ Multinomial(n.., 711, 712, 721, T22):
A 1 1 1 1
var(log) = — + — + — + — (8.53)

nit M2 N21 N22
[l Hypothesis Testing

The mostly used hypothesis is the dependence assumption: p; = ps, or more generally speaking for m x n

table:
H() Ty = T, Vi,j (8.54)

Denote O;; = n;; as the Observed value, E;; = n..m;; as the Expected value.” Expected value is calculated
for the model used, under null hypothesis Hy. Example for independence test 7;; = m;.7.;:

ng. M.j ng. M.

ﬁ'ij = ﬁ'i.ﬁ’_j = nini = Eij = n..frij = " (8.61)
Statistics:
+ Pearson’s y? Test:
I J 2
2 (Oij — Eij)" 2 o
Xp=>_D ]T — X(1-1)(-1) (8.62)
i=1 j=1

2E;; is calculated based on data and the model you choose, thus can be applied to more complexed cases, e.g. Hardy-Weinberg
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¢ Likelihood Ratio Test:

I J
OH %
G? = —2log(A) =2) ) 0Oy;log T Xt —1)(L-1) (8.63)
i=1 j=1 v
Some other useful tests:
e McNemar test on w12 = 7o for matched pairs:
_ 2
L2 = (nlz n21) i X% (8.64)
ni2 + n21
Section 8.3 Clinical Trial Design*
Section 8.4 GWAS*
proportions with X gene grequency p
P (X“X“; Female) =p° (8.55)
P (XAX“; Female) —2p(1 — p) (8.56)
P (XAXA; Female) =(1-p)? (8.57)
P (X*Y;Male) =p (8.58)
P (XAY;Male) =(1-p) (8.59)

In such complex case, parameter should be estimated using e.g. MLE estimation.And then calculate E;;s

L(p) = [p*] 7" [1 = p?] 74" [p] O [1 — p)Oam (8.60)




Chapter. IX %itEF I FILE D

Instructor: Sheng Yu

In this course, some key formulations/theorem in machine learning are deduced, together with core principles

llustrated.

[l What is Machine Learning?

Machine learning is a field of computer science that uses statistical techniques to give computer

systems the ability to "learn” with data, without being explicitly programmed.
Examples of Machine Learning:
 Linear/Logistic Regression (Linear Model), Chapter 3 ~page 71, section 9.1 ~page 243;
* Decision Tree, section 9.6 ~page 261;
» Support Vector Machine, section 9.3 ~page 251;
* Clustering, section 4.7 ~page 138, section 9.5 ~ page 258;
» Bayesian Network, section 11.4 ~page 299;
* Neural Network, section 9.7 ~ page 264;
» Conditional Random Field
* etc.

This section will cover some of the methods above in a machine learning perspective.

Section 9.1 Linear Model

Linear model is the basic model in statistics, see Chapter 3 ~page 71.

9.1.1 Linear Model in Machine Learning Perspective
In machine learning field, key feature of linear model is its affine form of variable dependence:
Y = f(X)+e=fa(X'B)+e 9.1)

where usually X = (1, X1, Xo,..., X}), 8 = (Bo, b1, B2, - - -» Bp).l Some example of linear model:

'Some materials use X = (X1, X2,...,X,), 8 = (81, B2, ..., Bp), and the affine dependence is f(ﬁo + X'B)

243
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* Linear Regression:

Y=0+pz1+...0xp+e=XB+e (9.2)
* Generalized Linear Model:
Y ~ f(O(X'B)) 9.3)
in this framework,
— Linear regression:
Y ~ N(X'8,0%) 9.4)
— Logistic regression:
Y ~ Bernoulli(logistic(X'f3)) 9.5)
9.1.2 Linear Regression
Linear Regression:
Y =80+pixi+...0prp+e=XB+e, &~ N(0,5?) (9.6)

usually use Squared Error Loss to eatimate (3, 02)

. . 2 A 2
(v, f(x)) = (v = (X)) = (v - x3) ©.7)
LSE estimator (where Y and X imply corresponding sample vector/matrix), more detail see section 3.3 ~ page 81:
9L oo B=(X'X)"'X'Y (9.8)
op
* Predict:
Y =Xg=XX'X)"'X"Y (9.9)
» Hat Matrix:
H=Pxy=XXX)"'X (9.10)
idempotent and symmetry
H?=H, H=H 9.11)
« Properties of 3, 02:2
cov(f) =cov (X' X) ' X'(XB +¢)) = (X'X) o? (9.12)
~ 0'2
cov(e) =cov(Y —=Y) = (I — H)o? (9.14)
Y'(I - H)Y

var(o?) =var(MSE) = (9.15)

n—(p+1)

*Definition of VIF; see section 3.4.7 ~page 98
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9.1.3 Regularization Methods

In machine learning topic we would focus more on model generalization ability, so that the model can perform
better on reality problems. In linear regression, we usually use normalization methods.

Basically linear model uses SE loss:

n n

L= (yi—Bo—B)* = (yi — B (9.16)

i=1 i=1
we can put various normalize term (penalty) in loss or put constraint on 3: (these two methods are equivalent

in many cases)

+ Ridge Regression//s Penalty/Tikhonov Regularization:?

fridee — argmlnz — 28+ N8I3 (9.18)
B =
or equivalent form
ridee — arg mlnz —2/B3)? (9.19)
B i=1
s.t.]|B]3 < s (9.20)

in either case, \ or s is hyper-parameter.

Ridge regression has closed form solution
gridee — (X'X + \I)7IX'Y (9.21)
Intuitively speaking, ridge regression help shrink B by an non-zero factor.

A Bayesian point of view for Ridge regreession see section 13.4.9 ~page 357

* LASSO/¢; Penalty:

G0 _ argmin'S (g — 28)” + Mgl 9.22)
i=1
or equivalent form
BLASSO arg mlnz — ﬂ (9.23)
st Bl <5 (9.24)

LASSO help shrink significantly large coefficients and truncate small coefficients.

3Recall for £, norm: for n-dim vector ¥ = (v1,v2,...,v5)

m 1/p
vl = (Z Ivi”> (9.17)
=1
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* Generalized ¢, norm penalty:
e = arg mmZ 2+ 1813 (9.25)
B =1
or equivalent form
ridee — arg mmz — z/3)? (9.26)
B i=1
st |1Bl5 < s (9.27)
* FElastic Net:
= argmin Y — X818 + Al + 221313 (9.28)
equivalent form:
& :argmin 1Y — Xp|? (9.29)
9.30
8+ 281 < s 930
icking proper hyper-parameter (s, A A2
— S, —
p g proper hyper-p N+

A note on elastic net: the boundary of elastic net A\1||3]l1 + A2||3]|3 = const is between ¢; boundary

and /5 boundary. Both the variable selection feature of /1 and the differnetiable feature of /5 are partially

maintained.

* Adaptive LASSO:

n D .
B = argminz (yu — :1:;6)2 + A Z AE]L'S (9.31)
B i=1 j:1 |B] ’

* Non-negative Garrote method*

* SCAD*

Section 9.2 Basic Classification Model

Denote: Dataset D = {(z,v:), ¢« = 1,2,...,N}, x; = [zi1, x40, . ..

, Tip|, with reponse y; € C =

{c1,¢2,...,ci} as a K-classification problem. When K = |C| = 2 for binary classification, in this case we

usually denote Cp; = {0, 1}.
Target is to predict/classify Y from X

(9.32)




Tuorui Peng

CHAPTER 9. %t 5 3] Fit 345
9.2.1 Classification Metrics

* Accuracy

247
P (Y = y) 5 Sin H](\z; = ¥i) (9.33)
 Error Rate/ Misclassification Rate
P(V#AY) > Zi H](\Z; a1 (9.34)
* Prevalence for binary classification
P(Y =1) Z% i (9.35)
[0 Confusion Matrix and Metrics for Binary Classification

%% 9.1: Confusion matrix for binary classification

Predicted Value Y
Ground Truth Y 1

0
1

niy nio
0

o1 100
Metrics:

* True Positive Rate (TPR)/ Sensitivity/ Recall:

P(?:1|Y:1);>

SV g =1) Iy, =1)

nii
= 9.36
Zf\il I(y; = 1) n11 + nio ©-36)
* False Positive Rate (FPR):
N N
. . N (g =1)-I(y; =0
P(V =1y =0) - iz (% ) Myi=0) _ _ nar (9.37)
ie1 Ly = 0) no1 + oo
* True Negatie Rate (TNR)/ Specific (SPC):
P (Y =0y = o) LELIG:=0 14=0) _ noo (9.38)
SN I(yi = 0) no1 + noo
» False Negative Rate (FNR):
N /s
- : ~I(g;=0)-I(y; =1
P(Y =0y =1) 2 0i=0) Mui=1) __ mo (9.39)
o1 Wy =1) ni1 + nio
Positive Predictive Value (PPV)/ Precision:
Py 17 —1) 5 Sl d@i=1) Iyi=1) _
il I =1)

9.40
n11 + No1 ( )
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* False Discovery Rate (FDR):

N ~
A ~ . ]:[ P = 1 . ]I P =
P (Y —0Y = 1) 2y izt (?jv )My =0) _ _ nor (9.41)
iz i =1) n11 + no1

* Negative Predictive Value (NPV):

N ~
R - SN (g = 0) - T(y; = 0
P(Y=0[¥ =0) — 2im M0 =0) My =0) oo (9.42)
>im1 19 = 0) n10 + 100
 False Omission Rate (FOR):
N ~
. . N (g =0) - I(y; = 1
P(Y=1[¥ =0)— 2imM0i=0) Myi=1) __ mo (9.43)
>V 15 —0) 1o + oo

Fi Score:

) precision - recall

F = (9.44)

precision + recall

Receive Operating Characteristic Curve (ROC Curve) is used to examing performance of a model with

threshold s:

. 1, F(X
o case f(X) > s (0.45)

0, case f(X)<s

for each s, the model gives a corresponding TPR(s) (recall) and FPR(s), all (TPR(s), FPR(s)) forms the

ROC curve. Area Under ROC Curve (AUC) is used also as a measure of model performance.

9.2.2 Cross-Validation

In general process of train & validate, we split the data into train set and validation set, which causes insuf-

ficient usage of data. k-fold Cross-validation (CV) is proposed to oversome the problem.
1. Divide D into k folds

2. For each time i = 1,2, ...,k, pick the i fold as validation set, others as train set, train the model and

calculate the metric m;

3. Average over all folds is used as final performance

iy = D=1 M (9.46)

CV could help ease the problem of overfitting.
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9.2.3 Bayes Optimal Classifier

Due to the randomness of class distribution, no classifier could reach 100% accuracy, but there is an optimal

classifier (if we really know the underlying distribution) to minimizie the expected loss:

K
By xepm (£) —Ex (zak,w») ¥ = x| ©.4)
k=1
= 9(%)optimal = argmin L(k, j) - P (Y = k| X = x) (9.48)
J
(if 0/1 loss) =argmax P (Y = j|X = z) (9.49)
J

which is the Bayes Optimal Classifier §()optimal, its error rate is Bayes optimal rate.

9.2.4 Fk-Nearest Neighbours Approach

The k-nearest neighours (KNN) fit with threshold s:
A 1
fay=2 > w (9.50)
i, €N (2)
N 1, case f X)>s
Y = A( ) (9.51)
0, case f(X)<s
where Ny () is the nearest k datapoints of x, various distance measure || - || could be used. k-NN method is
faced with the problem of curse of dimensionality (see section 4.3 ~ page 129) in high dimension case. Calculation

cost is at O(IV).

9.2.5 Density Based Classification

An intuition: samples from the same class k should be clustered, we use some distribution to represent it as
fx(z). Bayes optimal criterion with prior 7

Jr(@)

g(x) = argmax P (Y = k| X = ) = argmax ———"——
K EoY e file)m

= argmax fj ()7 (9.52)
k

[ Discriminant Analysis
Detail about discriminant analysis could be found in section section 4.6 ~page 135. Here are some recaps:
Discriminant analysis assume a gaussian distribution

1

= G

1 _
exp {—2(1’ — )T (- ,Uk)} (9.53)
* Linear Discriminant Analysis (LDA): Assume ¥, = 3, Vk

P(klz) o fr(z)mg
Pl %8 fom

T 1 _ _
=log 7?’; = 5 (i + p)'® N — ) + 257 (g — ) (9.55)

log

(9.54)
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Classification function:
. 1 .
§(z) = arg;ﬂnax op(z) = arg]rgnax log 7 + 'S 1 iy, — 5/122_1,&;{ (9.56)
N
o :Wk (9.57)
ik :Z%Ek ‘ (9.58)
K . "
$ :Zkzl Zi:yi:k(xi — fu) (i — /Lk), (9.59)
N-K '
* Quadratic Discriminant Analysis (QDA): Allow different Y5, Classification function:
N .1 A 1 V. .
g(x) = arglznax o (z) = argIICnax log g, — 5 log [Xg| — i(x — i)', Yo — ) (9.60)
N,
o :Wk 9.61)
~ 2:':-=két
L (9.62)
~ NIV

. (s — i —

N _Ez vi i iNk /jki( i — fik) (9.63)
(] Naive Bayes Classifier
Distribution is estimated as (which is a naive decomposition)
fi(Z) = fu(z1) fe(x2) . .. fi(zp) (9.64)
Classification function:
p k A
y(xz) =arg max 7y, H fr(x;) = argmax Z 7y log fr.(z;) (9.65)
2

i=1 Eooim

9.2.6 Logistic Regression

Logistic Regression calculates P (Y| X) directly. Detail theory see section 3.7 ~page 110. Here are some

recaps:

e®'s
~Binom | 1, ——=
yle 1+ev'B

e'P Ly
Classify with thres hold s.
) Multiple Classification
e Br
P(Y=klX=2)= T a =12,..., K—-1
L4350 e'h

1

P(Y =K|X =x) =
( | ) 1+Zlfi;1 e’ By

Comment on Logistic Regression:

(9.66)

(9.67)

(9.68)

(9.69)
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« Classification core 2/ is linear, so logistic regression is still a linear classifier.

* Classification paramter s are usually obtained using MLE. Detail see section 5.4.3 ~page 170.

*U(B)\ 94(B)
(t+1) _g(t) _ 9LpB)
g+t =gt (aga&) % (9.70)
=80 L (X'WX)"LX'(Y — logit(X, D)), W = diag {1ogit(X, BDY & (1 — logit(X, 5@)))}
9.71)
> R. Code

1 |library (glmnet)
> |glmnet (x, y, family="binomial") # two-class

3 |glmnet(x, y, family="multinomial") # multi-class

4 |glmnet(x, y, family="binomial", alpha, lambda) # with penalty

O Logistic Regression as Loss-Penalization Method

Logistic Regression with £ norm regularized term is

N
. A
argmin Yy logP (Y # y:| X = 255 8) + 7 |16 (9.72)
i=1
_argmaXZIOgl—f-ey’ @] 4 Hﬁ|| y; € {+1,-1} (9.73)
=1

where f(-) is classification function, 5y + 2’3 for linear classification.

Section 9.3 Support Vector Machine

Support vector machine (SVM) classifier was one of the most successful classification model in 2010+,

mainly because of the kernel trick method in extending feature space.

First we will consider the linear classification case, i.e. dataset D = {(Z;,v;), i = 1,2,..., N} are devided

by a linear boundary 2’3 + 9, where label y; € {1, —1}.

9.3.1 Derivation of Basic Optimize Problem

[0 Hard Margin SVM

The intuition of SVM is to determine the classification boundary by ensuring all the points are ‘far away

enough’ from the boundary.

argmax M
B,B80,M

t. : —1,2,....N
s.t HBHy(wﬁJrﬁo) [
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where M for ‘Margin’, which indicates the distance of point from boundary. L.H.S. of inequality is the
distance from x; to boundary.4
However note that the dof" of this problem is 1, i.e. all (8o, 5) o (8§, 8*) give the same result. We could

omit this dof by putting an extra constraint, here a convenient one is used: ||3|| = U ie.

) 1
argmin 5]
B,Bo:M=1/||8||

s.t. yz(l';ﬁ"i'BO) >1 :1=12,...,N

[J Soft Margin SVM
To tackle the case when y;(2;8 + Bp) > 1 cannot always been satisfied, use soft margin by inducing a
‘slack variable’ &; for each point, indicating the proportion of distance that the point enters the margin, see fig-

ure 9.1 ~page 252

K] 9.1: Support Vector Machine Illustration

400 Proof: denote some point on '8 + Bo = 0 as 21 (i.e. ', 8+ Bo = 0), then the distance of z to boundary is the projection of

& — x on unit normal vector

[EIh
o B 1,

d=|(z —2") 5| = —|2'B8 + Bo] (9.74)

1Bl 1Al

further because y; varies at different sides of boundary:
yi=1:2'8+ B0 >0 9.75)
yi=—1:2'"B4+ 6o <0 (9.76)
we can replace the | - | using label:
1 /

d («'B + Bo) ©.77)
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Primal 6p:
1 N
arg min “IBIFP+Cy &
8.60:M=1/]8] 2 Z;
st. yi(xif+pB)>1-& i=1,2,....N
§& =0 i=1,2,...,N
write the generalized lagrange function as defined in equation 5.20 ~ page 147:
1 N N
L(B, o,z ) =5 1B +C D&+ 0 [1 - B+ Bo)] Zuza (9.78)
i= i=1
st. «a; >0, p; >0, i=1,2,...,N (9.79)
oL
dual problem is given when ——— = 0:
P ¢ 95, 6o &;
N
oL .
%5 = 0:8= ; QYT (9.80)
N
oL
0By i=1
oL
—=0:C=a;+py, 1=12,....N (9.82)
3
Dual 0p:
Op(a, ) _Bmlré L=—= Z Zalajylij i+ ZO" (9.83)
) 07 7 i=1 j 1
st. 0< o <C (9.84)
N
D aiyi =0 (9.85)
i=1

we can maximize fp to obtain &y, ji; = C' — &;. And (B, Bo, &;) are given utilizing KKT condition for

*

d* = maxfp= min Op = p*:
an P phok TP

1—& —yi(2iB+ Bo)} =0

(C—&)& =0

1—& —yi(@iB+ o) <0
0<a; <C

£ >0

N
= E G Yi T
i1

(9.86)
(9.87)
(9.88)
(9.89)
(9.90)

(9.91)
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discussion on different cases of oy, &;:

G; =0:6=0 (9.92)
&i =C y(xiB+ o) =1-& (9.93)
0<é@; <C:o=0,yi(zif+ b)) =1 (9.94)

where all points 7% := {iSV|0 < Qv < C, éisv = 0} are called ‘support vector’, that can be used to

determine Sy:

N

B=>dwimi =Y dywi (9.95)
i=1 i€Ts

Bo =y — zjs B (9.96)

9.3.2 Support Vector Machine as Loss-Penalization Method

SVM Primal can be express in equivalent form with f(z;) as prediction function, e.g. f(z;) = By + 3 for
linear SVM:
§& >0

§i > 1 —yif(zs)

= & > max{0,1 —yif(2:)} = [ — yif(w:)]+ (9.97)

in which [- |4 = max{0, - } is hinge loss:

N
; A 2 _ 1 N /
arg}gm; L—wf @)+ SIB1% A= f(a) = o+ 2B (9.98)

A
which is naturally in an arg min Zf\il L(zi, i, f(zi)) + 573( f(+)) Loss+Penalty form.
f

Section 9.4 Feature Expansion and Kernel Methods

Motivation: Map the data point € X' (e.g. = RP) to another feature space F(e.g. = RM) (not necessarily
a linear transform, usually M > p, or just proper to describe the features). The mapping function lies in a Hilbert

space H of function:
h(-)=(h1(-) ha(- ), shu () €eH: X = F (9.99)

and we can construct model in feature space.

9.4.1 Reproducing Kernel Hilbert Space and The Representer Theorem

Based on the idea of feature space, make a step forward: the key focus of model is actually ‘measuring space
structure by similarity between points’ rather than having to define a feature space. i.e. describe similarity by a

bi-linear Kernel Function

K(z,2') e X x X - R (9.100)
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In intuition for Kernel is an ‘inner product kernel’. The Kernel corresponds a kind of inner product structure

on H, the kernel should satisfies the following properties:

1. Positive Semi-Definition:

// K(z,y)g(x)g(y)dedy = 0, Vy(-) (9.101)
or an equivalent form:
Zn: K(zi,xj)aa; >0, Yz}, {a;}]—y, VneZ" (9.102)
ij=1
2. Symmetry:
K(z,y) = K(y,z) (9.103)

Eigenvalue +; and eigen function ¢;(z) of Kernel:
[ Kot dn =0 (9.104)
In Hilbert space, the eigen functions are orthonormal:
(¢i, 5) = /x ¢i(x)pj(x) dz = 65 (9.105)
And Kernel K (z,y) could be represented from its eigen value and eigen function:

K(z,y) :Z%d)i($)¢i(y) (9.106)

which is Mercer’s Theorem: Semi-positive definite symmetric kernel could be expressed as an inner prod-
uct form. Such a form is also called the kernel trick because it usually avoid calculating inner product in high

dimensional space.

[0 Reproducing Kernel Hilbert Space (RKHS) Now use set {¢;} as the orthonormal base to form a Hilbert

space Hx = span{¢;} i.e. any function f € Hx could be expressed as expansion
px) = pidi(z) (9.107)
i

The inner product defined for this Hilbert space is’

<Z pidi(), Y l/z‘¢i(l‘)> =Y “VV (9.108)
i i Uy it
and norm induced by inner product
2
e =525 1) = Y fiita) (9.109)

SHilbert space is complete linear space with inner product defined.
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Note: when z is fixed, f,(y) = K(x,y) is a function of y, and vice versa. Use the above expansion and

inner product:
y) = Zl: Yii(2)$i(y)
=Y _VAidi(ahiei()
_ Zl: (i¢i(@)) (idi(y))

Yi

<Z Yigi(x Z%@ >
Hi
= (K(2,8), K(&,9))3,

which is the reproducing property of Kernel K ( -, - ) and its corresponding Hilbert space H i
[l Representer Theorem for RKHS

(9.110)

(9.111)

(9.112)

(9.113)

9.114)

With Kernel and its corresponding RKHS defined, we could write a optimization problem as loss+penalty

form:

N
A
argmin Y £(yi, f(w:) + 5 |15,
fetr =1

Representer Theorem: Solution to above optimization has a finite form

g & K (x, ;)

i.e. we can optimize over {d&;}}¥ |, instead of optimizing over { f;}°,.

norm of f is represented as

Optimization problem equation 9.115 ~ page 256 is parameterized by {d&; } Y ;:

arg min E yz,g G&; K (x4, 25)) E E G0 K (4, 5)

{a:i} L eRN j—1 i=1 j=1
Or written in matrix form y = (y1,v2,...,yn) @ = (a1, a9,...,ayn), K = {K(wi,mj)}%-:l:
al A
argmmZE y, Ka)+ =d'Ka
a€RN 2
i=1

Classification criterion

N
= Z diK({L‘, :L‘z)
i=1

9.115)

(9.116)

(9.117)

(9.118)

(9.119)

(9.120)

(9.121)
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9.4.2 Useful Kernel

Some useful Kernel for numeric vector x:

* Linear Kernel (identity):

K(z,y) = (z,y) (9.122)

+ d" Degree Polynomial Kernel:
K(z,y) = (1+ (2,y))" (9.123)

* Radical Base Function Kernel:
K(x,y) :=exp [_W—;JHQI (9.124)

o
 Sigmoid Kernel:

K(z,y) = tanh (1 + (z,y)) (9.125)

Note that equation 9.119 ~page 256 includes Kernel K (-, -) only, thus Kernel trick could be applied to

various scenarios once we could define a proper Kernel. e.g. Substring Kernel for string sequence.

9.4.3 Kernel Support Vector Machine

Replace the inner produce term in Dual problem of SVM equation 9.83 ~page 253 into Kernel function to

obtain Kernel SVM:

argmaxz o — = Z Z a0y K (4, 25) (9.126)

=1 j=1
st.0< o <C, Zaiyi =0 (9.127)
Z oy K (x, x;) (9.128)

€LY

Or use the loss+penalization primmal form of SVM:

N N
A 1
argmmz l—yZZa] (i, ) —1—522071-&]-[((@,%), )\:5 (9.129)
i=1 j=1
+
1 ,fx: fvalexizs
j(z) = () = 2oy Qi 20) (9.130)

A~

1 L, fe) =N, &K (z,2:) < s

Note: Here a; and &; are not the same set of number, but the optimization problems are the same (if

{K(xi, x;)} is non-singular).
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9.4.4 SMO Algorithm for Kernel SVM*

Idea: reduction from N-dim optimization to many 2-dim optimization.

9.4.5 Kernel Regression

00 Kernel Regression with Squared Error Loss

Recall linear regression with Squared loss and penalty
. 2 A2
argmlnz [yi—ﬁo—xgﬂ] —i—§HBH2 (9.131)

replace linear classification f(z) = Sy + 2/ by Kernel K

A
argmin(y — K&)' (y — Ka) + 56/[(@ (9.132)

(63
Solution is similar to ridge regression form:
a=(K+ )Yy (9.133)

U Kernel Logistic Regression

In logistic regression, the loss function is binomial deviance log [1 + e vf (x)]

N N N
argmin Y _ log [1 tevi Zle@jK(wﬂ] n g SN didy K (wi,2;) (9.134)
a = i=1 j=1
1 ,f T) = Z]\L a;K(x,z;) > s
j(z) = (#) = 2y 86K, ) (9.135)

1 L fle) =N &K (z, ) < s

Section 9.5 Clustering

Clustering is an important scenario of unsupervised learning D = {xi}f\il, to cluster ‘similar’ data points

into the same group.

9.5.1 Proximity Matrix
For separation concern, we should first define some metric to measure similarity between data
dij = D(a:i, .Iij) (9.136)

common usage of distance measure see section 4.7 ~page 138

And form the proximity matrix W:
D = {dij} = (9.137)

Usually some clustering algorithm would claim some properties:
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* Non-negative element and non-zero diagonal:
di; >0, Vi, j. di; =0, Vi (9.138)
* Symmetry
D=DT (9.139)
Overall dissimilarity:
| NN
D= WZZD(%,@) (9.140)
i=1 j=1

0 Optimizing Goal of Clustering

With similarity/dissimilarity defined, clustering target could be expressed as maximizing within cluster scat-

ter/ minimizing between cluster scatter, with respect to clustering group C'( -)

arg max Z Z Z Jﬁz, .’E]

k 14:C(x5)=k j:C(x;)=k

arg min — Z Z Z ZEZ, IL‘]

c() k 14:C(z:)=k j:C(x;)#k

The two forms are equivalent due to a fixed sum:

(9.141)

(9.142)

1K LN
52 Z Z D(z, z;) + Z Z Z (i, x)) §ZZD(xi,xj) := T = const

k=1i:C(x;)=k j:C(zj)=k k 14:C(xs)=k j:C(x;)#k

i=1 j=1
(9.143)

Usually search for cluster assignment is based on iterative greedy descent search.

Some frequently used clustering methods were included in section 4.7 ~page 138

* Hierarchical Method

* K-Means

* EM-Gaussian Mixture Model

* DBSCAN & OPTICS Density Method

In this section, an extra model based on spectrum is introduced

9.5.2 Spectrum Clustering

Express the dataset as a Graph G = (V,E, W), where V = {v;}}¥, for vertex, & = {e;;}V

i,j= 1,W:

{wij }%:1 for edges and weights. In this case cluster is a graph partition problem.

0J Graph Laplacian

Some definition:




260 CHAPTER 9. %% 3] $i648 4 vincent19

* Degree of vertex:

N
j=1
* Degree matrix
D = diag{d;,ds,...,dn} (9.145)
* Unnormalized graph Laplacian:
L:=D-W (9.146)
is symmetric and semi-positive definite
N
ELE =) wij(6—§)* >0, VEeRN (9.147)
ij=1

Spectrum is based on studying the eigen vector and eigen value of L.
* For any graph Laplacian [, , 1,, is a eigen vector with eigen value 0
mXxXm

* In the case that G is not fully connected, with K subgraph G = {G1,Go,...,Gk}, i.e. W and L could be

written in diagonal form (usually need some row/column transformation)

Li 0 ... 0
0 Ly ... 0

L=|. (9.148)
0 0 ... Lk

the multiplicity of eigen value 0 is K, with each eigen vector as

g, = [I(v1 € Gr),...,I(vy) €Gx], k=1,2,....K (9.149)

* In real world case, the graph could probably expressed as a small deviance from a graph with subgraph:

Li 0 ... 0
0 Ly ... 0

L=|_ 7 | +NxN (9.150)
0 0 .. Lg

where we would expect the smallest K eigen value 0 = A\; < Ay < ... < Ak corresponds to the K cluster

we want.

Algorithm Spectral Clustering

1. Compute [,
NxN
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2. Determine the K smallest eigen values 0 = A\ < Ay < ... < Ag with eigen vector u;, i = 1,2,..., K
Uil U2 ... UK
u21 U929 oo UK T
U =[uy,ug,...,ug] = | _ . ‘ = [21,22,. .., 2N] (9.151)
_uNl unNg2 ... uNK_
Zi :[uil,uig,...,uiK]T, i:1,2,...,N (9152)
3. Cluster {z;}Y, with e.g. K-Means.
Choice of normalized graph Laplacian, would cause different cluster results:
« RatioCut L =1 — D™'W
K C
1 Bet(G;, G;
argmin — Z M (9.153)
G032 1G]
« Normalized Cut L = [ — D~Y/2W D~1/2
C
Bet(G;, G;
argmin — (G, 97) (9.154)
{G1,....GKk} 2 i=1 Ziegi Zjég dij
Section 9.6 Tree-Based Classification Model
Idea of tree: divide the space X into grids R,, and assign prediction into the most frequent class
f(a; € R,,) = argmax Z I(y; = k) (9.155)
k

r;ERm

But such method is not practical in high dimensional due to curse of dimensionality. Nore practical method

would be a greedy search, each step along one variable.

9.6.1 Tree-Based Classification

[0 Branch Growing Process

Grow branch on a node

Algorithm Classification Tree

In each branck growing on a node:

1. Look for a splitting variable x; and split value s:

arg min [NleftImPu(xi € Rieq(J, 5)) + NiighdmPu(z; € Ryigne(7, s))]
]78

Rleft(ja 5) = {l’ C Ty < 5}7 Rright(jvx) = {l’ L Ly > S}

useful impurity measure ImPu({z}) with py(X = {x}) defined

2 zex I(C(z) = F)
RY

pr(X) =

(9.156)

(9.157)

(9.158)
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» Misclassification rate
1-— m];axpk (9.159)
* Gini impurity
K K
S ok(l—pe) =D > ppw (9.160)
k=1 k=1 k'#k
Gini impurity with category weight Wx = {wy }5,,_,
KxK ’
K
DD wiwprpw (9.161)
k=1 k'#k
* Entropy
K
—> prlogpk (9.162)
k=1
2. usually the process ends when
|node| < const, Vnode (9.163)
3. Apply cost complexity pruning strategy
7|
(9.164)

Co(T) = NplmPu(Ry,) + a|T|
m=1

where T is tree, |T'| for number of nodes in the tree.

Comment:

* Tree methods is well-interpreted, especially similar to a natural desicion making process

» Handle non-linear classification pattern

¢ Unstable to data.

Performance of tree classification could be largely improved with bagging method and boosting method.
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Ty

T

K 9.2:

9.6.2 Bagging and Boosting

] Bagging
Bagging is short for Bootstrap Aggregation. Idea: for B boostrapped training data, the boostrapping result
B B
. 1 . .
fooot(x) = B fo(z) or = arg maxZ]I(fb(m) =k) (9.165)
b=1 kb=t

[0 Random Forest

Random Forest aims at decorrelating trees to reduce variance when averaging trees.

Algorithm Random Forest Bagging

1. Generate B different boostrapped training data. (random 1 by bootstrap sampling)

2. For each sample, grow a tree. In each split of tree (i.e. a branch growth), ¢ ~,/p variable components are

randomly selected for classification. (random 2 by randomizing components)

3. Take average or vote of all B trees as the final result
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Comment: A prune is usually needed, cause variance is reduced by averaging.

[J Boosting

Idea: Fitting result of previous trees could be used to modify following trees. The error rate of each tree

would influence the vote weight when bagging the results.

Algorithm Adaboost

1
1. Each observant is given weights w@(o) = 1=1,2,...,N

2. Form =1: M, M for loops of boosting:
(a) Grow a tree T(™)(z) with weight wgm)
(b) Compute error rate

SN w™ Ty # T (7))

) .—
err'” : ZN,lw(m) (9.166)
and define
o™ = log [(1 - err(m))/err(m)} (9.167)
(c) Reset weights by
w{™ = M) . exp [a(m)]l(yi £ T(m) (mi))] (9.168)
3. Output
R M
f(x) = sgn [Z am)(m) (x)] (9.169)
m=1
Section 9.7 Neural Network
0 Linear Perceptron with Activate Function
Usually linear perceptron is used as a neuron in neutral network:
y=g(wo +wizy + ... + wpzy) = g(z'w), z0=1 (9.170)
where g( - ) is activate function. Such Perceptron could be optimized by gradient
Some useful activate function:
¢ Linear Threshold Unit (LTU)
0, £€<0
9(&) = =n(&) 9.171)
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* Logistic Function
&) = ! (9.172)
&)= e '
» Hyperbolic Tangent Function
heo O 9.173
=t = 17
9(¢) =tanh& = S (9.173)
* Rectified Linear Unit (ReL.U)
0, £€<0
9(§) = (9.174)
£ €20
LI 2
L= ) Zj:l (95 — v5)

Output Layer

Hidden Layer

Input Layer

9.3: Structure of Feed-Forward Neural Network (1 Layer)

A MonoLayer perceptron with enough neurons (hidden units) could represent any coutinuous function. Mul-

tiLayer Perceptron (MLP) could even represent discontinuous functions.

9.7.1 Back Propagation

Perceptron system is usually optimized by back propagation (of gradient).
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An example to optimize v;p, 7, in figure 9.3 ~page 265:
l R ~
oL _ a?%gbh (9.175)
Ovin <= 99; dby, Ovin
!
o Of(u) 9f(v)
— (i — ) - . i 9.176
]Z:; 9505 — v5) D lums wn o, Whyj D luest | vihwi—vhx ( )
l R ~
0L _ 5~ 0L 09; O 9.177)
O 4= 99; dby, On
!
o Of(u) 9f(v)
— (i — ) - 22N . (=1 9.178
Z y] (yj yj) au u:Z ’whji)h—ej wh] 8’1) U:Z;‘izl VihTi—"Yh ( ) ( )

j=1

9.7.2 Neural Tangent Kernel*
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Section 10.1 Time Series Data and Model

10.1.1 Time Series Data and Tasks
Time Series : a sequential r.v. indexed in time order.
{Y:},t €T T isindex set (10.1)
and actual data of time series, i.e. times series data is called a Realization of time series, denoted’
{ydteTCT (10.2)

e.g. in forecasting task, 7" encodes history. In this chapter we usually focus on easier case of arithmetic progression

T ={1,2,..., N}, or at least numeric orderal sequence.

Time Series Analysis (TSA): Analysis on time series data to extract meaningful statistics/other characteris-

tics. Task of TSA includes:
* Describing and Explanaing the machanism of time series
* Forecasting
* Guiding the intervention of Time Series

In this section several modelling/forecasting methods would be included.

10.1.2 Time Series Model

There are plenty of useful modelling methods:

 Regression Model: View y as function of ¢, regression on some model y = f(t) with loss L. e.g. linear

regression

y=Bo+Bit+e, L= (y—h)’ (10.3)

teT

Modelling strategy is similar to that introduced in linear regression, see Chapter 3 ~page 71

'A note on T' C 7 actually T has to be discrete beacuse it is a sample of 7. while 7 is not necessarily defined as discrete.

267
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» STL Method: Seasonal and Trend decomposition using Loess. A decomposition of time series into ‘TS =
Trend + Season + Random’, i.e.

Y, =T, + 8 + X, (10.4)

and we could model T, S, X separately. The focus is the modelling of random term X;, which we expect

to be ‘stationarily random’ through time. (Usually we model this part also by ARMA model)
* Exponential Smoothing Model: Use weighted average over history to predict future.

* ARIMA Model: The main focus of this chapter.

Section 10.2 Stochastic Process and Statistics

10.2.1 Basic Knowledge of Stochastic Process
A stochastic process can be denoted:
{Xyp:teT}: Q—=>TxE (10.5)
i.e. the random ‘variable’ of stochastic process is a function X (t) € L?(T)
[J Some important cases of stochastic process:
* ii.d. sequence: g;1.i.d. ~ ¢
» White Noise: uncorrelated for different subscript ¢ in the sense of 2 moment, e, ~ WN (1, 02). where

E (er) =p (10.6)

cov(e, €5) :02(5t73 (10.7)

Further we can append more constraints on WN:

+ {&;} independent: independent white noise £; ~ IWN(y, 02)
+ u = 0: zero-mean white noise ¢, ~ WN(0, 02)
+ p =0, 0% = 1: standard white noise £, ~ WN(0, 1)

+ & ~ N(u,o?): normal white noise.

» Martingale difference sequence (MDS): zero expectation given history information: £; ~ MDS, where

E (Jet]) <oo (10.8)
E (21| Fi_1) =0 (10.9)

where F; denotes the history until time 7:

Fr=o0(es, s <T){€s,65-1,E5-2,...} (10.10)
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Relation: i.i.d. > MDS > WN > Stationary

Stationary Seq

ﬁ)\/ hite Noise \

MDS

. /

10.1: Relation bet. Sequences

[1 Measure of dependence within stochastic process

Given a stochastic process {X; : t € T}

* Mean Function

Mean: u; =E (X3), T —R (10.11)

» AutoCovariance Function (ACVF) and AutoCorrelation Function (ACF):

ACVEF: 7 s =cov(Xy, Xs), T xT =R (10.12)
Vt,s

ACF: =corr(Xs, X,) = — TxTe[-1,1 10.13

Pt,s (Xt, Xs) S [ ] ( )

« Stationarity: Stationarity is a measure that the ‘correlation structure of stochastic process looks the same’

at any time t, i.e. is stationary through time.

— Weakly Stationary (WS): given E (X?) < 0o, has const E [] and cov (independent of time)

E(Xt) = = p (10.14)

cov( Xy, Xy + k) =ve 44k = Lt (10.15)
— Strictly Stationary (SS): joint distribution invariant through time. For any given {t1,%2,...,t,} C T
th17Xt27"'7th = th1+h7Xt2+hy~~-,th+h7 Vh (10.16)

Some note on WS and SS:

— Generally speaking, WS and SS are not equivalant, WS < SS (note that SS does not put constraint
on E (X2))




270 CHAPTER 10. & F B 18] 5 71 3R 5 vincent19
— equivalent for gaussian stochastic process.
— ACF and ACVF of WS:
Veprk =Vk =V—k, VIET (10.17)
k
Dotk =pr = &, VteT (10.18)
Y0
Notation of ACVF matrix:
Y0 §a! Y2 o V-2 Vk—1
4! Y0 4! o VE—=3 VE-2
V2 g4t Yo o Vk—4 V-3
Tp = {viitm = | S , , (10.19)
Ve—2 Vk-3 VYk—4 70 il
| Ye—1 Yk—2 Yk-3 00N Y | e
Iy, is semi-positive definite.
E k
SN oy 20, Yk {t,... 4}, A (10.20)

i=1 j=1

* Partial Autocorrelation (PACF): correlation given information between two time points, orginal definition

P11 =1

(10.21)

G =corr ( Xy — L(Xe| Xpp1, oo, Xepr1), Xk — L(X | Xig1, - Xegom1)), B >2 (1022)

where L(X;| X1, .., Xti1k—1) is the Best Linear Estimation of linear model
Xr=P0+B1Xer1+ ..o+ Bp—1Xpph—1 t €

deduction:

— Best MMSE linear estimation X, = L(X;|X¢i1,..., Xipp_1) satisfies 2
2

k-1
{Bo, B} = argmin XT—50—25th+j
Bo,B =

solution: denote X = (Xiy1,..., X¢qx-1), 8= (B1,..., Bk—1)
B =>'Sx X,
o =E(X,;) —E(X)' B

1.€.

L(XA X415 Xevro1) = E(X7) + Zx, x 25 (X — E(X))
Simplified case for zero-mean Weakly Stationary E(X;) = u; v, Ik
L(Xtn| Xes1s -, Xeio1) =E(Xegn) + Bx,,,,xSx (X —E(X))

/ —1
=V 1L Xerk—1:441

?Detailed theory about MMSE and linear estimator see section 12.4.1 ~page 331, Linear MMSEstimator.

(10.23)

(10.24)

(10.25)
(10.26)

(10.27)

(10.28)
(10.29)
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Calculation formula for zero-mean Weakly Stationary:

— using determinant form

$11 =p1 (10.30)
1 P1 P2 Prk-2 Pl
1 1 P11 Pk—3 P2
Pk—1 Pk—2 Pk-3 -  P1 Pk ek
ik = . (10.31)
1 p1 P2t Pk—2 Pk-1
p1 1 pL  Pk-3 Pr-2
Pk—1 Pk—2 Pk-3 - Pl 1 ik

— Levinson-Durbin’s recursive formula

P11 =p1 (10.32)
Nk o
brpips = Z”k: R (10.33)
1- ijl ¢k,jpj
Oki1,j =Pk — Pkl kr1Phr1—j, J=1,2,...,k (10.34)

where ¢y ; here is a formal notation for recursion. But we will see its meaning in AR(p) model

(equation 10.92 ~page 276)

* Wold Decomposition: zero-mean weakly stationary time series can be decomposed as :

Xi= Y ¢jer;+Vi (10.35)
j=—00
where
¢o =1 (10.36)
gr ~WN(0, 0?) (10.37)

* Spectrum of zero-mean weak stationary time series { X, }:
X, = / E(N)eM dA (10.38)
A

We can use this form to construct ACF, ACVF, etc.

— Spectrum and ACVF: the fourier expansion of v is denoted

i =cov( Xy, Xoyr) = / eMu(N) dA (10.39)
A

and here a function F(\) = [ v(\) d\ is the spectrum of 7, and v/(\) is the spectrum density.
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For k =0,1,2,... (discrete time)
Y = / v(N)eF dA (10.40)

and also use inverse fourier transform: for weak stationary TS X; = Z]‘?’;foo pjer—j, €0 ~ WN(O, o?)

2

1 L o2 o0 > » o2 00 "y
V()\)—%/R’yke Wdk=— D D0 didre N =] D0 g (10.41)

k=—00j=—00 J=—00

10.2.2 Statistics

To estimate the above pr = 1, Yk, Pk» Prk given arealization of { X, }, say we have {z; }}"_;, we can construct:

* Sample mean

fi=dn = > (10.42)
t=1
{1 is the unbiased, consistent estimator, with
V(i — p) % N(0,0?) (10.43)
an estimator using spectrum:
V(i — 1) % N0, 270(0)) (10.44)
oo oo
2m(0) = +2> 1= Y. v (10.45)
j=1 j=—00
o ACVF ~y:
1 n—k
=D (= @)@k — 1) (10.46)
t=1
A 1 n—k
= S e — ) (10.47)
t=1

Note for actual usage:

— We usually avoid estimation for & ~ n due to large error when n — k is small

— In most cases we use 4, rather than 4%, for two reasons:

% We often estimate -y, for small k, which means 4, ~ 4

% 4, could guarantee the semi-positive-definition of I'y:
T ={Fij}i,_1 =0 (10.48)

asymptotic distribution: denote i.i.d. standard normal time series W; ~ i.i.d. N(0,1)

VA0 = 90,51 = V12 Ah — ) S (€061 -1 En) (10.49)
E (¢4) — o4 > .
&= ((U;’Yj)WO +) (v ) Wi, 5 =0 (10.50)

t=1
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* ACF pg:
A~ n—k N ~
0 >t (xe — 1)
asymptotic distribution: denote i.i.d. standard normal time series W; ~ i.i.d. N(0, 1)
. . . d
V(o =70, % = Y15+ 4 — ) = (Ro, R, ..., Bp) (10.52)
o0
Ry =Y (drejpr—j = 2pp))W(1), j =1 (10.53)
t=1

* PACF ¢y take py in the calculation equation of ¢gy.

Section 10.3 ARMA Model

Two of the basic modeling methods for time series: Auto-Regression (AR) and Moving-Average (MA)

10.3.1 Backshift Operator and Difference Equation

[0 Backshift Operator %

For clearer notation of ARMA and induce the solution, we first introduce backshift operator 4 of time series:
given time series {X;}?

BX; = X1, Vi (10.58)

further it can be used as variable of function by Laurant function series expansion:

P(z)= Y b2 (10.59)
j=—o00
W(B) = > B (10.60)
j=—o00
VBXe = ) 0B Xe= ) UiXi (10.61)
j=—o0 j=—00

Linearity: for time series {X;}, {Y;}. rv. U, V, W:

H(BYUX, + VY + W) = Ub(B) X, + Vi(B)Y; + Wip(1) (10.62)

*Backshift operator could be used to construct difference operator A = (1 — %), e.g.

AXt = (1 - %)Xﬁ = Xt - Xt—l (1054)
A*X; =1 - B)°Xe = Xi —2X11 + Xi o (10.55)
(10.56)

or seasonal difference operator Ay, = (1 — %), e.g.

AsXy = (1 - BY) =Xy — Xi—a (10.57)
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Ul Difference Equation
p'" order ordinary difference equation:
X — [alXt,1 + a9 Xi 9o+ ...+ apXt,p] =0 (10.63)
can be solved using backshift operator: define characteristic equation which would have p roots (;
A(z) =1— a1z + a22® + ... + apz”] (10.64)
P
-1 _ Zajzj (10.65)
j=1
P
=] - ¢2) (10.66)
j=1
p .
AB)=1-> a; P (10.67)
j=1
P
=[J-¢2) (10.68)
j=1
similar to ODE, we can construct general solution from ¢, and particular solution.*
10.3.2 AR(p) Model
Auto-Regression model (of order p) contains (p order) backshift on X:
Xi=¢1Xeo1+ 2 Xe—o+ ...+ ¢pXip +er, &1 ~ WN(pue,0?) (10.69)

or expressed in backshift operator with ¢(z) =1 — 25:1 ¢;27, where the root of ¢(2) = 0 denoted ;

O(B)X; = €1, e ~ WN(pe,0?)
P . P
d(z) =1-=> ¢;2/ = [[(1 — ay2)
j=1 j=1
(] Properties and Solution: (here we consider stationary case u. = 0)
* (Weak) Stationarity condition:
o > 1, Vj

+ Solution of X;: using the expansion of ¢!
p .
0(2) =1 = ;7
j=1

¢~ (z) =Z¢j2j7 o =1
=0

(10.70)

(10.71)

(10.72)

(10.73)

(10.74)

4Cases for multiple root see https: //www.math.pku.edu.cn/teachers/1idf/course/atsa/atsanotes/html/_atsanotes/

atsa-lagdiff.html
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https://www.math.pku.edu.cn/teachers/lidf/course/atsa/atsanotes/html/_atsanotes/atsa-lagdiff.html

Tuorui Peng CHAPTER 10. & A bit18] 5 5] 30 4 275
naturally expressed in the form of Wold Decomposition:
oo
NB) Xy =g, =X, =¢ (B)ar =D ey, tho=1 (10.75)
j=0
e ACF and ACVF:
o0
T =02 itk (10.76)
j=0
Do itk
P =— (10.77)
>0
* Spectrum density v(A):
2
v(\) :12 iw-eMJ (10.78)
o |4=~ " )
7=0
o | 1
_7 ‘gzﬁ (e )( (10.79)
27
* Yule-Walker Equation: we have
E(XeXi—k) =01E (Xem1 Xyp) + ... + OpE (X4 p Xyi) + E (e Xo—g), VE=1,2,...,p (10.80)
=V =011+ F OpVe—p, VE=1,2,....p (10.81)
and for k = 0:
Yo =17+ ...+ dpyp + 0 (10.82)
written in matrix form to get Yule-Walker Equation:
gl Yoo Y-t |1
L I Ll A (10.83)
B I e e = B (I I 2
0% =y — 1 — .. — pYp (10.84)
or in dense matrix form (1):
v =T¢ (10.85)
o? =0 — ¢y (10.86)
dense form (2):
—0” YoM Y2 o Mp -1
0 Mo M Y-t |91
(10.87)

0 1 Yp Yp-1 Vp—-2 70 ¢p
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* PACEF: the coefficient of AR(p) has straight relation with ¢y, ;: for all given & > p

(¢17 ce 7¢pa 0,... 70) = ((Z)k,l’ SR ¢k7p7 ¢k’,p+17 SRR (bk’,k’) (10.88)
(Note that ¢, j = ¢p11,; = ¢py2,j = ... using Levinson-Durbin’ recursion at equation 10.32 ~page 271).
U Estimation: Key focus is the estimation of ¢;, i = 1,2,...,p and o? (assume a TS of . = 0)

Y-W Estimation and OLS Estimation are moment methods, asymptotically the same. MLE Estimation is

usually more precise, but hard to calculate.

* Yule-Walker Estimation: use v = I'¢. First estimate 4, as well as I, and get estimation for ¢, o

¢ =114 (10.89)
52 =49 — 4T 15 (10.90)

Asymptotic distribution:
Vil —¢) S Ny(0,0°T7Y) (10.91)

* Levinson-Durbin’s recursion for Yule-Walker Estimation: since PACF are the same as coefficients ¢y, ; =

¢;, we can use Durbin’s recursion to avoid calculation of I'~!

b1 =p1 (10.92)

~ k n ~
Prt1 = D j—1 Ph,jPht1—j

Pht1 ot = = k>1 (10.93)
1 - Zj:l Pk,jPj
Pkt =Ohj — Ohrt pr1Phhri—js J=1,2,...k (10.94)
52 =4 (10.95)
o =071 (1 — & 1) (10.96)
estimator:
bj = bp.j (10.97)
* OLS Estimation: using the linear combination form of AR model:
2
n p
¢=argmin Y |z — Y bz (10.98)
¢ t=p+1 j=1

the solution is in the form of OLS estimator (X’'X)~! XY, with X, Y properly defined

* MLE Estimation: under normal assumption

H(B) Xy =¢er, e~ N(0,0°) (10.99)
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Likelihood: define 6 = {¢1, ..., ¢p, 0%}

n
L(O;a, ... xn) =f(x1,. .. 2pl0) [] Fladlaes,... 21;0) (10.100)
t=p+1
n
o | fladeis, .. 2150) (10.101)
t=p+1
“ 1 1 P
2
= H exp ——2(xt—2¢jatt_j) (10.102)
i1V 2mo? 20 =
1 & P
=(2702) (P2 exp ~53 S (@ —> gimij)’ (10.103)
t=p+1 j=1
» Estimation to spectrum density:
A —2
52 L »
~ _ X
Y = o 1—2@6 J (10.104)
j:

10.3.3 MA(q) Model

Moving-Average model (of orderq) contains (¢™ order) backshift on &;:
Xi=er+ 011+ ... +04c1—g, &~ WN(pg,0?) (10.105)

or expressed in backshift operator with 6(z) = 1 + 25:1 0;27, where the root of 6(z) = 0 denoted ;

Xy =0(B)ey, 1 ~ WN(pe,0?) (10.106)
q q
0(z) =1+ _0;27 = [(1 - K;2) (10.107)
=1 j=1
q
= 02/, 0;=1 (10.108)
7=0

here we could note that AR(p) model has solution in the form of MA(c0):

AR(p) : Xy = ahjerj, o =1 (10.109)
7=0

O Properties and Solution: (here we consider stationary case p. = 0)

* Invertibility: if and only if
|kj| > 1, ¥y (10.110)

¢ ACF and ACVF:

02150054, 0<k<gq

e = (10.111)
0, k>q
a—kp.p.
723:2 THE g<k<gq
pp = i=09; (10.112)

0, k>q
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* Solution: éj could solved from {~;}
10.3.4 ARMA(p, q) Model
Auto-Regerssion-Moving-Average model ARMA(p, q) in the form of
O(B) Xt = 0(B)ey (10.113)
P
= ¢;i2) =[] - ey2) (10.114)
7=1 7j=1
q q
= Z H (1 - K;2) (10.115)
L] Properties and Solution: (here we consider stationary case p. = 0)
* Solution:
X = ¢ N (B)(B)er == U (B)e, (10.116)
* Weak Stationarity: if and only if AR part is WS, i.e.
laj| > 1, Vj (10.117)
* Invertibility: if and only if MA part is invertible, i.e.
|kj| > 1,V (10.118)
10.3.5 ARIMA(p,d, q) Model
ARIMA (p, d, q) model adds an difference term A? = (1 — %)% in ARMA(p, q):
H(B)(1 — B)X; = 0(B) (10.119)
Section 10.4 Seasonal Model for Time Series
This part includes some ideas for modelling seasonal term (usually as well as trend term) in Y; = T;+S;+ X;.

Usually we describe the trend term as the ‘mean’ of time series over time, and sensonal term with zero-mean

and period P > 1.
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%% 10.1: Buys-Ballot Table of seasonal period s

Season ()
Period (i) 1 2 N
1 (7 Y2 e Ys | Y1 o1
2 Ys+1 Ys+2 cee Y2s | Yoo O
m Ym—1)s+1  Ym—1)s+2 -+ Yms | Um-  Omp
y Y1 Y2 Ys | Y- -
62 62 62 62 | - 6?2

10.4.1 Regression Model

A common functional description is polynomial trend + Fourier expansion senson, i.e.

Y; =T} + S; + X (10.120)
“ b 27 27
=ag + Zajta + Z [@- sin(=~jt) + 7 cos(~~jt) (10.121)
7j=1 J=1
Note: for regression model, 7} and S; are treated as invariant term.
Estimation of paramters {a, o, 8,7;} use e.g. MSE estimator:
{G0,05,8;,7;} = argmin Y [y — (T + Sp))? (10.122)
{a0,25.8;:75} ter
10.4.2 Moving Average Model
First estimate Trend term, then Seasonal term
Trend term is estimated by a symmetric moving average window {w; }}”wa with band width w
w
T, = Z WYt (10.123)
j=—w
wj=w_j, Jj=-w,~w+1,...,w—-1w (10.124)
w
> wi=1 (10.125)
j=—w
then seasonal term is naturally estimated by
Sy =y — T (10.126)
10.4.3 Seasonal ARIMA Model
Multiplicative seasonal ARIMA model with period s of Y;: ARIMA(p, d, q) x (P, D,Q)s
Op(B°)bpp(B)(1 — B)(1 — B°)PY, = Og(B*)0,(B)er, e ~ WN(0,0?) (10.127)
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On the ACF plot of SARIMA, you should see peak at tj,g o< s

Section 10.5 Model Selection and Diagnostics

10.5.1 Model Building of ARIMA

[J Box-Jenkins Approach for ARIMA Model:

1. Data Transformation: Note that in the general model Y; = T} + S; + X; we would expect a ‘stationary’ ran-

dom term, thus a transform for stable variance is needed, see section 3.5.1 ~page 102 for detailed methods.

Then we could preliminarily detect the Stationarity of sequence, e.g. by plotting.

2. Seaonal Term Detection: usually by plotting ACF plot & ACVF plot, further we could also use spectrum

plot, seasonal subseries plot.
3. Stationarity Detection: Detect stationarity e.g. by unit-root test.

4.

10.5.2 Order Determination of ARIMA Model
O Order Determination of AR(p)

* PACEF test: use the proper of ¢y, j, for k& > p where

¢p, k<p

0, k>p

Ork =

for all given k > p: Asymptotic distribution:
n 2 d —
Vi(dea — Skts - Sk — Grk) — N(0,0°T; )

specially it could be proved that (oI "), = (¢°I; "), , =1, k>p.

)

i.e. test statistics for AR(p):

qu)ka i) N(O, 1), w.r.t. Hy : ¢k,k =0, k> p

Plot g%k,k—k to determine the proper £ as p.
+ AIC/BIC method: use p = arg min AIC(k) or arg min BIC(k):

2k
AIC(k) =Iné} + —

Kl
BIC(k) =Ing? + ~ "

n

O Order Determination of MA(q)

(10.128)

(10.129)

(10.130)

(10.131)

(10.132)
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 ACEF test: use the cut off property of py of MA(q):
a—kp.p.
w’ 0<k<gq
pp = 5=09; (10.133)
0, k>q
use the asymptotic distribution of p,, in equation 10.52 ~page 273, for m > q:
Vipm S R (10.134)
o
= (prem + pr-m — pepm)Wi (10.135)
t=1
q
=S Wi, m>g (10.136)
l=—q
q
~N(0,14+2> pf) (10.137)
j=1
i.e. test statistics for MA(q):
T,(m) = Vhm L N@O,1), Ho:pm=0, m>q (10.138)
A/ 1+2 23:1 P?
+ AIC/BIC method: use ¢ = arg min AIC(m) or arg min BIC(m):
2
AIC(m) =In&2 + = (10.139)
n
1
BIC(m) =Ing2, + 01 (10.140)
n
[0 Order Determination of ARMA (p, q)
* AIC/BIC method:
2(k
p,G =argmin AIC(k,m) = argminlné?, + k£ m) (10.141)
k,m k,m ’ n
k |
P, G =argmin BIC(k,m) = argminln?  + (k£ m)lnn (10.142)

» EACF for ARIMA(p, d, q): Extended ACF forms a matrix for determining (p, d, ¢) using extended Yule-

Walker Equation

10.5.3 Outlier Detection

Here we introduce two kinds of outlier in time series: Additive Outlier (AO) and Innovative Outlier (10).

[ Notation for Outlier

 Step function in time series: a rise of value 1 at time 7:

0, t<r

1, t>71

(10.143)
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* Pulse function in time series: a pulse of value 1 at time 7:

0, t#T
P =1-2s" = (10.144)
1, t=71
0 Additive Outlier
A pulse outlier of y at 7:
= (7)
Yt = Yy +waly (10.145)
the outlier would not influence ¢ # 7, thus is additive.
[ Innovative Outlier
A pulse outlier of € at 7:
Er =€ +wr (10.1406)

t # 7 would also be influenced by this outlier.

Section 10.6 Forecast of Time Series

10.6.1 MSE Forecast Criterion
The criterion for forecasting is to minimizing some loss function, usually taken as MSE loss:

X, = argmin E[(X, — X,,)"] = E (X,) (10.147)

.

our mission is to construct a function g( - ) so that )A(T‘t = g(F;) canactas the estimator. %, = { X3, Xy 1, X4—9,...}

denotes the history until ¢.

10.6.2 Best Linear Estimator

A simple and straightforward method is a linear combination form of .%;:

X => BiXi (10.148)
j=0
o 2
B =argminE | | X, =Y B;X;; (10.149)
{85} j=0
1.€.
X, = L(X;| %) (10.150)

Solution was given in equation 10.28 ~page 270:

B =3%, Drx, (10.151)
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* e.g. ont-step forecast for zero-mean weakly stationary sequence:
o)
Xt :Zﬁthfj (10.152)
j=0
A=y (10.153)
(For actual case, calculate for a proper truncation p for Xt+1|t = Z?:o B X¢—; would be fine)
Best linear estimator is the best estimator for ARMA (p, ¢) with WN noise.
10.6.3 Forecast of AR(p)
AR(p):
P
X1 = Z OjXpp1-5 + et (10.154)
j=1
1. First estimate coefficients, e.g. using Yule-Walker estimator gZ;j, j=12....p
2. Esitmate of Xy
A p A~
Xivie =) 61 X041 (10.155)
j=1
G141 =07 = A0 (10.156)
3. Estimate of X ;: estimation conduct sequentially for h = 1,2,. . .:
Xpv1p =01Xe + 2 Xe1 + .+ Gp X1y (10.157)
Kol =01 X1 + G2 Xt + 03 Xim1 + .. + pXeoyp (10.158)
Koo =01 X pa + G2Xp 1y + 3 Xe + GaXeor + o+ pXeasp (10.159)
(10.160)
10.6.4 Forecast of MA(q)
MA(q):
q
Xt+1 = E¢41 + Z@j€t+1_j (10.161)
j=1
1. First estimate coefficients éj,j =1,2,...,¢q
2. Estimate of X, p;: first for each k = 1,2, ..., ¢, calculate residual estimator:
€ = Xk — L(Xg|Fp-1) = X — L(Xg| X1, ..., X1) (10.162)
then calculate forecast:
) S, 0iéi-5, h=1,2,....q

0,

h>q
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10.6.5 Forecast of ARMA(p,q)

ARMA(p, q):
O(B) X, = 0(B)er = Xy = ¢~ (B)O(B)er = Y(B)ey (10.164)

similarly estimate 1; and ¢; and forecast as MA (o)

10.6.6 Forecast of ARIMA(p, d, q)
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Instructor: Wanlu Deng

Section 11.1 Neyman-Rubin Potential Qutcome Framework

Neyman-Rubin Framework (Donald B.Rubin, 1978), also called Potential Outcome Framework is based on

counter-factual outcome inference to judge causal effect.

11.1.1 Description of Causal Effect and Challenge
Causality concerns ‘what would happen when an action is applied to a unit’. Here the ‘unit’ is how causality
is different from correlation.
* A unit is the physical object at that specific time, which is similar to the event in Einstein’s relativity.'
* An action is the treatment/intervention that could be potentially applied to the unit.

In this section we mainly focus on cases with binary intervention, i.e.?

{treatment, control} = {1,0} (11.1)

O Potential Outcome

With this notation, the causal effect could be expressed by the estimand as follows by comparing the poten-

tial outcomes, here’s a commonly used form:
T := Yireatment — Ycontrol := Y(l) - Y(O) (11.2)

To estimate the causal effect (on a unit), we need to obtain both potential outcomes of Y (1) and Y (0), but in
the real world we can only observe one of them, say, the patient took the medicine, and we got Y (1), while Y (0)
is missing.

Relevant Notation:

» Unit: The atomic object in causal inference. i = 1,2,..., N

* Treatment W;: (possible) assignment.

"Which means that one object at different time ((,t) & (x,t')) is not the same unit (event). However if the assumption of time
independency is valid, then object in different time could be the same unit (usually less resonable for human subjects).

*Habitually we denote the more “active’ intervention as treatment, but in mathematical form they are symmetric.

285
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— Treatment Group: Set of {Unit;|IV; = 1};
— Controlled Group: Set of {Unit;|IW; = 0}.

* Potential Outcome (PO) Y;: For each unit with action treatment(or control), the potential outcome Y (W =
w), w = 0,1 is the ‘Eigen Outcome’ of the model, despite of what really happens. It can be seen as what

would happen when the operation had not been done.

* Observed Outcome Y;"bsz The actually happened outcome, YZ-ObS = Y;(W = wreaL casg) = Yi(W =

b

w™).
* Missing Outcome Yimis: The potential outcome when the wzmis ::!w;’bS would have been operated (it does
mis
i

exist but we cannot observe the ‘world-line” where w

Y;(W; = 1 — wrgaL casg) = Y;(W; = wls)

was operated, thus is unknown to us), Y™ =

Yi(1) W;=1
Y;obs — Yi(VVZ‘ObS) — ( ) (11.3)
Y;(0) W;=0
| . (vio) wi=1
Y = V(1 - W) = (11.4)
Yi(1) Wi=0
or in condensed notation
Y;0bs W, 1-W;| | V(1) Y;(1) W, 1-W;| |Y°bs
| = & = | (11.5)
y,;ms 1-W; W; Y:(0) Y;(0) 1-W; Wi y,me

+ Causal Effect 7; (defined by difference of PO): Difference between potential outcome, 7; = Y;(W; =
1) =Yi(W; = 0) = Yi(1) — Y;3(0)

* Pre-Treatment Variables / Covariates X;: Some background elements that might attribute to treatment
selection/potential outcome. Anyway they may cause confusion to causal inference. For example, the

gender of patients X; € {female, male} := {1,0}.

* Subgroup: Treatment/Contorl group could be further divided in subgroup according to covariates, e.g.

categorical covariates X; € X

{(X3, Y3, Wi)} = Q{(Yi, Wi) biex,—¢ (11.6)
fex

With the above basic notation, a dataset / sample can be expressed as
D= {(X;,Y;, W)}, (11.7)

(] Assignment Mechanism and Super Population

* Our observation sample is a finite sample { X, Yz}f\il in which Y; is perceived fixed as potential outcome.
And the above notation are studying the causal information within the finite sample. The randomness of

the causal effect in the sample is the assignment mechanism W; ~ fyxy. i.e. in finite sample, POs
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are fixed and actually different assignment mechanisms give randomized data (in a finite sample). So if
we can control the assignment mechanism W |Y, X, which is the case for randomized experiment, then the
assignment mechanism can help estimate the missing values. Some widely used mechanism includes Com-
pletely Randomized Experiment, Stratified Randomized Experiment, Pairwise Randomized Experiment,

etc. Proper assignment can help avoid the influence of covariants (recall Simpson’s Paradox).

« Before that, the finite sample of {X;, Y;} | is drawn from a super population with some distribution.

To summarize, The whole model has 2 stages of randomness: sampling from super population, and assign

treatment to the finite sample.

Super Population M Finite Sample {X, Y} Twixy Observation D = {X,Y, W} (11.8)
sample NV assignment

11.1.2 Assumptions

The null model is complicated, say, there could be multiple PO levels / interference between assignments /

complex assignment mechanism, etc. There are some basic assumptions to help simplified the model.

Note: In actual usage of causal model, the assumptions should be checked.

» SUTVA: To solve the problem of omitted treatment (e.g. Y¥; € {Y;(0),Y;(1),Y:(2)}), and the intervention
between units (e.g. Y;(W;=1.n)) to simplify the model, we usually put the assumption of SUTVA, which

has two components:

— No Interference
Yi(Wj—1.n) = Yi(W5) (11.9)
— No Hidden Variation of Treatment:
Yi(Wi—in) = Yi(Wi) € {¥i(1),Y:(0)}, Wi € {1,0}:=T;=T (11.10)
* Regular Assignment Mechanisms (RAM)

— Individualistic Assignment: Assignment probability of each unit does not depends on the covariants

and PO of other units:

P(Wi = wil X, Y (1), Y (0)) =P (W; = w;|X;, Yi(1), ¥;(0)) (11.11)
=P(W;|X;, Yi(1),Y;(0)" (1 — P(W|X;, Yi(1),Y;(0))' ™, ¥i = 1,2,...
(11.12)
Sometimes for simplification, denoted as
Pi(W = 11X,Y(1),Y(0)) := ¢(X, Y (1), Y(0)) (11.13)

— Probabilistic Assignment: Probility for both W; = 1 and W; = 0 are non-zero (to ensure a reason-

able causal model)

0 <P(W|X,Y(1)Y(0)) <1, VX,Y(1),Y(0) (11.14)
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— Unconfounded Assignment: Assignment mechanism is independent of PO
P(W|X,Y(1),Y(0)) = P(W|X) (11.15)

when ¢(X,Y’) mentioned above does not involve Y, i.e. with unconfoundedness, it is denoted as

propensity score.
q(X,Y) :=e(X), case WIY|X (11.16)

Note: Unconfoundedness is not testable (always invloves the missing value Y™). We can only pre-

design it (randomized experiment) or make it an appropriate assumption (RAM).

[J With all the above assumptions, assignment mechanism can be simplified in the following form:

Assignment Mechanism: P(W|X, Y (1),Y(0)) = %H e(X)Wi(1 — e(X;)) Wi (11.17)
(11.18)

[J Data Example

Z% 11.1: Nlustration of Causal Data

Potential Outcomes Assignment Observation Causal Estimand

Uniti  Y;(1) Y;(0) W; yobs Y;(1) — Y;(0)
#1 V(1) Y1(0) Wi=1 Y™=Yi(1) Yi(1)-Yy(0)
#2  Ys(1) Y5(0) Wa=0 Y™ =Y50) Ya(1)— Y5(0)
#3  Y3(1) Y3(0) W3=0 Y =V30) Y3(1) - Y3(0)
#4 V(1) ) Yi(1) —Y4(0)

Y4(0) Wyi=1 Y=V,

Section 11.2 Inference to Causal Effect in Completely Randomized Experiment

First we focus on the randomness in finite sample, i.e. randomness of assignment mechanism. Specifically
we usually consider the case of Completely Randomized Experiment (CRE): /V; in N items are given treatment

and N, = N — N, in N are given control, and the assignment is given randomly.
N N
P(W\X,Y)_l/( ) WeWRE={w: Y W =N (11.19)
M i=1

The assumption of CRP is important in causal inference because it fixes the gap between Y °* and Y™ by

randomly assign treatment/control.
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11.2.1 Fisher’s Exact p-value

Test of Fisher’s Sharp Null Hypothesis:
Hy:7,=0,Vi=1,2,...,N e H,: Jjs.t.1; #0 (11.20)

With the hypothesis, we could fill in all the Y™ by Yimis = YZ-"bS Vi. And by traversing all possible W

assignments and calculate corresponding 7y;,, we could calculate the Fisher’s exact p-value

p=#(my| > \mb/(ﬁ) (11.21)

Comments:

* Since the basic idea is traversing all W, so it could be applied to differenet deigns of 7, say

FT _|robs _ jrobs (11.22)
jmedian :]medt(Y"bs) — medc(Y"bs)\ (11.23)
Yobs _ }_/Obs
f_t—stat —_ t c (1 1 .24)
s2 /Ny + s2/ N,
al 1 N
arank _| > -
7k —|R — Re|, R;= ; (Hyjdi + 2Hyj:y;.> -5 (11.25)
N 2
# = argmin Y (bes — By — W — X{ﬁx) (11.26)
7:(B0,8x,T) —1
Or even some other specially designed statistics on e.g. difference in variance
P =par® [vard™ (11.27)
N
* High computation complexity for large N. e.g. for N; ~ 5
N
flops ~ ~ 2N 11.28
o (1) na
* Random simulation for large /V: the p-value is actually
P (more extreme 7) = I [1(more extreme 7)] (11.29)
which can be approached by random sampling
p=#(|r] > \TW|)/#(samp1e) (11.30)

* A fiducial interval can be constructed. But generally speaking the hypothesis testing just help reject the
sharp hypothesis, but cannot help determine the casual effect strength.
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11.2.2 Neyman’s Repeated Sampling Approach

Neyman’s method uses the distribution of W for completely randomized experiment to obtain the property

of the finite sample estimator

N
D A ZWY Z (1131)
* Property
Ew [f] =78 = ZY (11.32)
.82 52 52
vary (7g) :ﬁtt + ﬁcc - ﬁ (11.33)
2
NNtS NN + e SiSe (11.34)
St = L (Y1) — Y (1))?
S¢ = w7 2i=1(%i(0) Y(0))?
1 _ _
S2 = XN, (V1) = Yi(0)] = [V (1) = Y(0)))* = S + 52 — 2peSiSe
i
Yi(1) =Y (1)) (Y;(0) = Y
\ptC (N _ 1)StSc Z’L:l ( ( ) ( )) ( 1(0) (0))
(11.35)
¢ Estimator
s :?;Obs _ Y::Obs (11.36)
2 2
var (7) :%t + JS\TC (11.37)
N, N, 2
var,(Tg) N]ifts? + N]if 2+ N PSS -1<p<1 (11.38)
C
2 2 .
e.gvar -1 (1) zsﬁtt + ;—“ - <sth°> < var(#g) (11.39)
1 = 2
st = N —1 Zizwizl (Yz‘ObS - YtObS)
t (11.40)

1 5 2
33 = m Zi:W¢=O (YiObS _ Ycobs)

i.e. var(7g) provides an upper bound of var,(7g) (equal when p = 1). And var(7g) also acts as the

estimator at 7; = const, Vi.>

¢ Confidence Interval

Cl =7 + N,y 0/ var (75) (11.41)
CIp :7A'f5 + Na/2 'U&Tp('f'fs) (11.42)

3 Actually in this case we should have s; = s := s and the estimator reduces to var(7) = s2(1/ N, + 1/N.)
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where the version with pre-specified p is applied to improve accuracy, if we have prior knowledge about
Pre-

* Hypothesis Testing

Ho:Y(1)=Y(0)=0w H,:Y(1) =Y (0) #0 (11.43)
and t-test
T=—"__ oy (11.44)
var(Tg)

+ Comment on three components S? / S / S2: they each corresponds to the natural distribution of treatment

/ natrual distribution of control / variation arises from assigning on finite sample.

So when dealing with the estimator under distribution of super population, in which we need to add the

randomness of fx y back, the S2 term eliminates (which can be proven).

Esp [%fs] =Egp [EW [%fs]] = Tsp (11.45)
~ \-obs \obs \/ \/ 2 Ut2 02
vaTSP(TfS) :Esp (Y; - Yc - IEsp [Y(l) - Y(O)]) } — ﬁ + ﬁ (11.46)
t c
T
vars () =N, TN, (11.47)

where o2 is the variance under the distribution of super population Y| X, X.

0’?(%‘) =Varg: y|x Y(1)|X =), 0? =varg, (Y (1)) (11.48)
o (z) =varg, yx (Y(0)|X = 2), o2 =varg, (Y(0)) (11.49)
Ugt(x) =Varg. v|x (Y(1) - Y(0)|X =), Ugt =varsp (Y(1) = Y(0)) (11.50)

11.2.3 Regression Methods

Regression methods in Potential Outcome Framework is used to introduce covariates and lower the variance

estimation, the idea is similar to variance decomposition in ANOVA.
[0 Requisite Knowledge: M-Estimator

With data D,, given, parameter estimation problem can usually be expressed in a Maximization problem

with linear combination target function Q,,(0; D,,)
0,, = argmax Q,(6; D,,) (11.51)
0

e.g. for regression estimation Y = X5 + ¢, D), = {z;,y;}I; = (X,Y)
* OLS quadratic form 6 = /3

— _l yi—218)’ = — (Y - XB)(Y — XB) (11.52)
n n
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* MLE form with € ~ f(g;¢),and 0 = (3, ¢)
Qu(b) = - f (i — 15:0) (11.53)

=1

Denote the ground truth 6*, and the M-Estimator én that maximizes (),,. Then

0 :arg(grlaxIEp [Q(6; D)) (11.54)
0, :argénaxQn (11.55)
with Q, — E[Q] = 0,, — 0* (11.56)
The solution 9n is obtained at 6@8”9(6) = 0, so we first focus on first order derivative
Yn(0; D) 1= wffgp) O = arg(un (6 Dn) = 0) (11.57)

Note: a more important reason we study the property of v, (0; D,,) is that: we do not have an explicit
expression of 0,, because it’s just a maximizer. 1, (0;D,,) together with taylor expansion provide us with an
approach to (asymptotically) express 0,, explicitly.

with LLN, we have

* d *
Un(0: D) S E[(0%)] = 0 (11.58)
with CLT, v,,(6*, D,,) is a statistic asymptotically distributed normally:

Vi (005 Dn) — E[(0%D)]) = vitha (6% D) 5 N(0,Sy) (11.59)

Taylor series of ¢, (- ; Dy,) at O,,:

a@bn(e = én; Dn)
0+ 50

~ —1
N (en .y ) ~ ( - ) V(07 D) (11.61)

D07 D) = (9* . én) L O(6" — 6,)?) (11.60)

N 00

= 0, LN(6*, T7's, I /), T (11.62)

and specifically if @, (0; D) is a log-likelihood, then )(; D) here is Score function in equation 2.78 ~ page 48.
And ¥, = I(6) is Fisher Information in equation 2.89 ~page 48. With the nice property of Fisher Information
I1(0) = ¥y = —E [I'], M-Estimator reduces to the asymptotic distribution of MLE in equation 2.68 ~ page 46

-1
b, % (07, 1)

) (11.63)

[J Regression Model on Super Population

Motivation: regression model

YV =47 Wi+t f(Xi8) +ei (11.64)




Tuorui Peng CHAPTER 11. B R s FE309 293

concerns a quadratic loss function of the following form:
N

A5 1 obs 2 .
(@7 Basx =argmin > (Y™ a7 Wi = f(X:)) = argmin Qx (07, )5 {0 Y5 W)
aﬂ—yﬂ =1 avaﬁ

(11.65)
Note :
« Covariate dependency function f( -;/3) is a properly selected prior, e.g. linear regression X’

* In functional form it’s the same as regression (reflects correlation), the causality comes from CRE of W.
Solution:

¢ Model without covariates

YOS =471 -Witeg (11.66)

OLS solution:

zij\il(Wl - W)(Y;Obs — barY °%)

A \-obs v obs
Tols = N = = Y;O -Y (11.67)
2im (Wi = W)? )
Qs =Y % — 715 - W (11.68)
2 2
Ay 9t Tc
var(7) =N + N, (11.69)
2 ~2 1 al obs C-obs 2 1 Y obs A 2\ 2
2= t:]\[_l;Wi<Y; v ) :]\H;Wi<3/; —T—a) (11.70)
2 ~2 1 al obs _-obs 2 1 a obs 2
2 = 6 :]\H;a_m) (Y; - ) :]\H;a—wi) <YZ- —a) (11.71)
= 1=
. st se ..
var(Tols) N + N = var(7g) (11.72)
* Model with Covariates and Asymptotic Property:
YO = a4 1 Wi+ f(Xi58) + & (11.73)

The quadratic loss @ ( - ) regression model gives a M-Estimator with ground truth as the parameters in

super population

(0477-75)* = IEsp [(a, 7-76)] = (aspaTspaﬁsp) (11.74)

OLS with covariates gives the same optimization solution to 7 as OLS without covariate: 7o5 x = Tols —
T* = Tep. And appending covariate dependency term can help improve variance estimation , with unbi-

asness property kept.




294 CHAPTER 11. B %48 3835 vlncent19

e.g. for linear dependency f(X;3) = X'

Tols,X = Tols —>Tsp (11.75)
)
VN (Fots xt — Tep) N (0, (D718, V) = N (o, M) (11.76)
S . _E 0QnN(a,T,8) 0QN(a, 7, B)
YRR 9, B) O, B) |y
-E [(Wi P2 (Y ar W — X/ﬁ*)z] (11.77)
D= WN—>00

using the asymptotic normality, we can construct variance estimation var hetero (Tols, X ) = iw’gz / p?(1—p)?
to 7o1s, x (With heteroskedasticity)

_ . 2
1 SN (Wi —W)? (YZ—(’bS — Qols,x — Tols,x Wi — X{ﬂols,X)

VAT hetero (%ols,X) = :

N(N — dim(X;) — 1) W2 (1- W)

(11.78)

11.2.4 Model Based Inference using Bayesian Statistics

Motivation: how to use prior information about distribution? Basically with P (WY, 8), f(Y'|9), 7(0) we

can construct any posterior distribution from
F(W,Y, X) = B (W]Y.6) f(Y|6)pi(6) (11.79)

[J Bayesian Statistics Precap

Estimation target: f(Y™$|Y°% 1¥), with assumptions

N\ L
CRE: P (WY, 0) :( > (11.80)
Ny
Y(1 2
Distribution: 1) ’ 0 ~f(Y10), say N H , e PO . 0= [, pe, 02,02, pl
Y(O) e pPO0¢ O'g
(11.81)
Prior: 6 ~m(0) (11.82)
Transformation: (Y°%, Y™8) =g (Y (1), Y (0), W) (11.83)

+ Transformation between Y = [V (1), Y (0)] + [Y°0s, Y'™is]:

et i o) GYWLY(0) | fwle) | av(),Y()
(o o) =f (Y‘W)’agW(l),Y(o»W)“fyfmwre)dy‘ag<Y<1>,Y<o>,W>
(11.84)
LUY0S 010100 00 0.1 - s

[, FWY,0) f(Y]0) dy | Y (1),Y(0) '
= (i) = (11.86)

Jos [ (VB YIS 0) dymis
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* Calculating posterior of parameter

:7.‘_(9) . ,/'<5/7‘)l”. ”"0) B W(Q) . ﬁ/m f(u")/‘ H)f()zobs. Ymisw) dymis

p(]Y°% W = . SR 11.87
S [+ I X R Y (VN G
* Marginal Integration
f (YmiS‘YObS,W) _/f (Ymis,Q‘YObS,W) do (11.88)
0
- / f(YmiS|Y°bs,W,&)p(@\Y"bS,W) de (11.89)
0

With the above (a little bit complex) steps we could estimate Y™, and also give the (bayesian posterior)

distribution of 7
f(’7'|Y°bs, W) — f(YObs _ YmiS|Yobs’ W) (11.90)
Model with covariate involved need modification with assumptions as

£ (Y (1), Y(0), X |6y x,0x) = (Y(1), Y(O)1X, 0y ) - f (X]6) (11.91)
m(Oy|x,0x) =m(0y|x)m(0x) (11.92)

and corresponding intergrations need to consider intergral on X.

Usually computation of integral terms is complex, simulation methods like random integration can be used,

see section 5.6 ~page 185 and section 13.3 ~page 343 for a brief introduction.

Section 11.3 More Assignment Mechanism and Observational Study

Some other classical randomized experiment are also used in causal experiments. This section includes

Stratified Randomized Experiment (SRE) and Pairwise Randomized Experiment (PRE).

In more cases we can only deal with observational data, which means the assignment mechanism is beyond
our control, thus some estimation is needed.
11.3.1 Other Classical Randomized Experiment

O Stratified Randomized Experiment

Usually when we notice that some covariate X can have significant influence on 7, we consider a SRE by

dividing data into stratum according to X
S (N, N, No) = {(N(), Ni(5), Ne(5)) Fiz1> S; == S8(X;) = Strataof D; € {1,2,...,J} (11.93)

with proportion of strata q(j) and propensity score e(j)

(11.94)
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SRE Assignment Mechanism:

J N() -1 N
]P’(W|S,Y):H< j) , WGWSRE::{W:ZWi]ISi:j:N(j),ijl,Q,...,J} (11.95)

j=1 Nt(]) i=1

With the notation above, the within-strata ACE 7(j) estimation follows exactly the same estimation as in

CRE, the key step is to aggregate {T(j)}}’:1 — T
* Fisher’s Exact p-Value: with the same sharp null hypothesis
Hy:17;,=0,Vi=1,2,...,N e~ H,: 3js.t.7; #0 (11.96)

we can conduct similar testing by traversing W € WSRE with a slight modification on test statistics, e.g.
g oy g g g

using 74 s 74ifA a5 example. Some other statistics used see equation 11.22 ~page 289
Adiff _ ‘thobs — yobs (11.97)
. J — — J
7A_d1ff,)\ _ Z )\(]) (Y;Obs(‘ﬂ _ Y;obsu)) . w.r.t. Z )\(]) =1 (11.98)
j=1 =1

Note: 74 returns to 791 if ) is chosen as proportion of strata A(j) = q(3).

* Neyman’s Repeated Sampling Approach: use similar aggregation method of weighting strata to form un-

biased estimator

J 1 1
Py = V7 (5), 7)) = —— WY — —— 1— W)Y 11.99
N5 e o (SEG) | S20) st%m) 100
Uar(TfS) _jzlq(]) var (T(j)) - jzlq(j) (Nt(]) + Nc(]) N(]) ( . )
P _ ! N2, A A\ 4 -\ 2 S?(J) 82(]) 11.101
var(7r,) —j;CI(J) var (7(j)) = ;Q(J) <Nt(j) + Nc(j)> (11.101)
1 _
t2 S\ : e Yobs_yobs £\ 2
S (]) Nt(]{ 1 ZZ.Slfj,Wlfl( i _t (])) (11102)
s2(j) = NGy =1 Y isimjwi—o (Y% — YO0 (5))?
* Regression Method: basic stratified regression model:
J
Y;obs =7 -W;+ Zﬁjﬂsi:j +& (11.103)
j=1
MMSE limit:
1
Tols = 7" = q(7)e(7)(1 = e(4))7sp () (11.104)

Y1 a(k)e(k)(1 — e(k)) =

—_

* Model Based Infernece: Similar process as in CRE. We could further assess population average by setting

hyper parameter ¢

Y(()IOG) ~ f(Y100)),  Oilo ~ma(0;l¢), &~ my(0) (11.105)
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[l Pairwise Randomized Experiment

Pairwise Randomized Experiment (PRE) can (in some sense) be vies as a special case that J = 5 which

can deal with continuous covariate cases. But a main difficult arises in variance estimation in Neyman’s mathod.

To estimate the variance, we put assumption of constant causal effect within group, which gives

S2(j) = S2(j) = 5%, Sp(j)=0 (11.106)
and we can access var(e) as
4 2
N 11.1
var(Te) NS (11.107)
1 N/2 .,
var(7x) i) Z; (7(4) — 7) (11.108)

11.3.2 Observational Study with Regular Assignment Mechanisms
Recap RAM:

Individualistic: P (W;|X,Y) =P (W;|X;,Y:) == q(X,Y) N

1 , W
Probabilistic: 0 < P(Wj|X,Y) < 1 =PWIX,Y) = [[e(X)" (1 - (X))
i=1
Unconfounded: P (W|X,Y) =P ((W|X)
(11.109)

With the above assumptions and notations, propensity score e(x) can help fix the problem of Simpson’s

Paradox by Covariate Balance
Wil X;|e(X;) (11.110)

Note: there could be some other selection of balancing variable ¢(z), in which e; is the coarsest, i.e. e(x) =

e(e(z))

11.1: Tllustration of covariate balance of propensity score (An example with linear dependence)
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L] Statistical Inference to Propensity Score

Property of propensity score:
var(e(X))

A =E[e(X)|W =1 —E[e(X)|W =0] = 11.111
e := E[e(X)] | = Ee(X)] | o1—p) ( )
Sl X) = fe(X) )2 2 2
var(e(X)) =E p°(l—0p (11.112)
)= | (o) | 70
* Propensity Score test can be accessed by
A b — 2,
Al = ¢ ~tn_g, f(x)=In <16($)> = logistic(x) (11.113)
(s34 53012 ~ @)
Al =0 avs A = 0 v var(e(X)) = 0 e fi(z) = fo(x) (11.114)
+ Estimate é(X;)
— For categorical X with small | X'|, estimation
; N(X;)
= 11.115
é(x) N ( )
— (Kernel) logistic regression is sometimes useful*
P(W; = 1|X; = e’ 11.116
é(z) =P (W; =1 z;B) = 11 @B (11.116)
(] Useful Methods to Induce Propensity Score in Estimation
» Weighting: using the modulation of e(z) on P (W |X)
Yobs - W E[Y;(1)|X:] E [W;] X;
e [M ) g [EIOKIEIGN
e(Xi) e(Xi) (11.117)
g | W A=W P [EMOIKEL-WiX]] _ g o)
1— G(Xz) N 1-— C(Xl) N !
to weight estimators through X: Horvitz-Thompson Estimator
1 Yobs N Yobs N —6 )) Yobs
AHT _
it —_ 11.118
N z:: i N g 1-— 6 z; ) €(XZ)) ( )
) 1/55);)( ) e
AHT ,mod obs _ obs L J
Z)\WY Z)\ (1—-WyYes, N = 11— E(x) L
S (1= W) /(1 — (X))
(11.119)

where the modification version is used to avoid extreme é value.

The Horvitz-Thompson estimator is linked to stratified Neyman estimator equation 11.99 ~ page 296 as
1

J Tgmjo——, Wi=1
Astrata Zq 7A_ Z WYobs o Zei(l - Wi>YiObs7 & = ]Nt(j){N(])
j=1 =1 Hsi:jm, Wl =0
c
(11.120)

where ¢; is the propensity score for each strata.

“Instruction of Kernel logistic regression see section 9.4.5 ~ page 258.
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* Blocking / Stratifying according to X, and then follows similar idea as SRE. (Because S(X;) is still a

covariate.)

* Matching ‘similar’ data points. e.g. for each data point (W; = 1,Y;, X;), select in Dyy—1_yy,—o for units

with small distance d(X;, X) as M;, and have a matching data
{(Wi = LY, X, My)}, M ={(W; =0,Y;, X;) Ya(x,,x;) smal
and then

1 _
P== (v — Y, )
Liwi=1

Section 11.4 Pearl Causal Bayesian Framework

(11.121)

(11.122)

Pearl Bayesian Framework® (Judea Pearl, 1995) uses causal information on a graph to construct inference.

11.4.1 Causal Bayesian Network

The language of Graph is used to describe the causal relations.

(] Directed Acyclic Graph

In Pearl’s causal network we focus on Directed Acyclic Graphs (DAGs) . Here are some key notions:

> DAG is a graph in which all edges are directed, and no path is a loop (acyclic).

> Graph G is composed of a set of Vertices / Nodes V and the Edges £ connecting them; G = {&, V}.

 Adjacency: Two vertices v;, v; are adjacent if they are linked by an edge e;;.

* Path: A (non-intersecting) routine tracing through edges to connect two vertices.

> Direction of edges: two vertices are connected by directed edge, pointing from the first to the second, say

the following meta X — Y.

O—

in which X is a parent of Y and Y is a children of X. Parent of note v; is denoted pa;

+ Skeleton : The graph with all direction removed (looks like a graph with only nodes and line, without

arrow).

> Acyeclic: a graph without loop is acyclic. The structure is naturally required to make the causal structure

healthy by clearly distinguish cause from effect.

0 Bayesian Network

3 Also called Bayesian Network / Belief Network / Directed Acyclic Graphical (DAG) Model.
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A probability distribution P (X7, X»,..., X,,) on vertices of graph has factorization given by conditional

probability:
P(X1,...,X,) =P(Xy| Xy, ) P(Xiy | Xigs .- ) o P (X5, X6, P(X0) (11.123)

in which indices {i1, 72, . . ., i, } can be any reshuffle of {1,2, ..., n}. Butif we attach a graph on the probability
to guide the factorization, the shuftle has to following some order, and form of conditional probability follows the

Markov parents on DAG:
P(X1,..., Xn) = [[P(Xilpa:) (11.124)
7

the r.v. sequence is causal ordering if X; only dependent on X.;;, i.e. pa; C {X1,..., X;_1}.

Here’s an example of Markov factorization on a DAG graph:

P (X1, Xo, X3, Xy, X5) =P (X5|X4) P (X1, X2, X3, X4) (11.125)
=P (X5|Xy4) P (Xy| X2, X3) P (X1, X2, X3) 9
(11.126)

=P (X5|X4) P (X4| X2, X3) P (X5|X1) P (X2 X1) P (X1)

(11.127) e

U] Basic structures in a DAG
Starting from triplets in DAG as the key elements in a graph.
e Chain X — Y — Z, in which Y is the mediator. We have
PXOPIYIX)P(Z]Y)

P(X,Z|Y) = =P(X|Y)P(Z|Y 11.128
(X, 2]Y) P (XIY)P(Z]Y) (11.128)
i.e. we have a conditional independency in chain X 1l Z|Y’
* Fork X <+~ Y — Z. We have
P(Y)P(X|Y)P(Z]Y
P(X,Z|Y)= (V)P (X]Y) P (Z]Y) =P (X|Y)P(Z]Y) (11.129)

P(Y)
i.e. we have a conditional independency in chain X 1L Z|Y’

* Collider X — Y <« Z. In the collider, X Ll Z marginally, but given Y are conditionally dependent. If

there is no edge between X and Z, it’s also called v-structure.

O—0—0

K| 11.2: Chain
K| 11.3: Fork K| 11.4: Collider
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0 d-Separation

d-separation in a graph is directional-separation of two vertices.
* Blocked path: a path p from X to Y is blocked by {Z} if for all triplets along the path:

— In Z: the middle point of all chains and forks; and

— Not In Z: the middle point itself of collider, and its descendants
* d-separation: X is d-deparated from Y given Z if all paths px..y are blocked by Z.

[0 Markov Compatibility

Markov compatibility is a match between DAG and probability distribution, a description of how G represents
P(-).

A textbook definition is given as:

If a probability distribution P (- ) admits a factorization P (X)) = [[, P (X;|pa;) relative to DAG G,
then IP is Markov Compatible relative to G.

Here ‘admits’ means that d-separation on graph finds its corresponding conditional probability.
X1UgY|Z = X UpY|Z (11.130)

Markov compatibility means that we can generate data following IP using G as ‘Blueprint’.

Related notions and comments:

» [-Map: is a set of conditional inpendence statements read out from G. If X and Y are d-separated by Z in

G (denoted X 1L gY'|Z), then we should have X 1L ,,,4inpppY | Z in every PP distribution compatible with G.

1(G) = {(X1gY|Z) : (X LpY|Z)VP compatible with G} (11.131)

* From I-Map we can have definition of I-equivalence: i.e. if G; and G, yield the same I-map 1(G1) = 1(Ga).
* Note that Markov compatible states that X 1l gY|Z = X Ll pY|Z but not reversely, which means that
1(G) C I(P)

* An concrete example: two r.v. are independently generated P (X,Y) = P(X)P(Y),ie. I(P) = X 1lpY.

All the following graphs are markov compatible:
- Go: X Y,inwhich I(Gy) = X 1L gY
- G : X =Y, inwhich I(Gy) =0
- Go: X <Y, inwhich I(G2) =0
(because they all have 1(G;) C I(P))
* Perfect I-map: if I(G) = I(PP).

* Observational Equivalence: A set of graphs are observational equivalent / belong to the same equivalent

class if they encode the same conditional independencies.
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Note that the key causal structures in DAGs are chain, fork, and collider; in which chain and fork imply the

same conditional independence while collider is different. i.e.
X—=>Y —_Z X+«Y <+ 7 X+«Y—>Z (11.132)

are observational equivalent by encoding X 11 Z|Y".
The above argument gives the hint for identifying observational equivalent graphs:

— Having the same skeleton

— Having the same set of colliders.

Here’s an example of observational equivalent graphs:

A8

(Partial) Skeleton

[J Causality on Bayesian Network

Recall that in Rubin’s Potential Outcome Framework, causality was induced by counterfactual side of po-

tential outcomes Y™ = Y'(1 — ). In Bayesian Network framework, causality is induced by intervention, in

formulas expressed by do( - ) operator, e.g.

P (X|do(Z = z)) (11.133)

where Z C X is the set to conduct intervention on. Intervention would remove all ‘incoming’ edges to 2, as

illustrated below an example of do(3 = ...):

!n do(=...) intervention g)

Original G Interventional G
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Since intervention produces different subgraphs, we can obtain causality by comparing the probability dis-
tribution. e.g. in the simplest instance X — Y v.s. X <« Y, intervention do(X = x) yieldsz — Y and X Y,

respectively, which have different observational outcome.

Causal Bayesian Network (CBN) is a DAG G compatible with P, if

* Notation: here P = {P (X |do(Z = z)) : VZ C X} is the set of all interventional probability distribution.
* VP 3 P(X|do(Z = z)) is compatible with G

* P(xildo(Z = 2)) = 1if X; € Z and ; = Zcorresponding value (Xi = ; is consistent with Z = z)

» P (X;|pa;) is invariant to interventions not involving Xj; itself.

Comments:

* Note that intervention do(Z = z) cancels some edges, so it would only add newindependencies, which

holds I(G) C I(PP) (still compatible).

+ With some intervention do(Z = z), the truncated factorization of P ( - ) is

P(X|do(Z =z))= [] P(Xilpa:) (11.134)
:X,¢7

11.4.2 Network Structure Learning

O IC/PC Algorithm

IC/PC Algorithm (Inductive Causation Algorithm with Peter & Clark Algorithm Refinement) is a constraint-

based method. DAG is constructed through identifying conditional independencies.

Here illustrated with the following example with conditional independencies. Ground truth is shown on the

right

X L RIS, VS C{Y,Z,W}  (11.135)
X L ZI8,¥S C {Y,R,W}  (11.136)
X LY|S, VS C{Z,RWY} (11.137)
Yy L z|s.vSsc {x,Rw} (@1.138) (R) (v)

Y LW|S, VS C {X,Z,R} (11.139)

XLW|Y (11.140) & @
VIR (11.141) 2
ZUW|Y (11.142)

ZUR|{X,Y)} (11.143)

WIR (11.144)

1. Learning Skeleton: For all paris (a,b) € V x V:

+ Connecta, biffno S, such that a Ll b|S,; can be found. i.e. a, bhaveanedgeifa J blany set of other nodes.
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X AL RIS, VS C {Y,Z,W} (11.145)
X A Z|S, Y8 C {Y,R,W} (11.146)
X AYIS, VS C {Z, RW)} (11.147)
Y 28, %S c {X,Rw} (11.148) (R) (Y)

Y LWIS, VS C {X,Z, R} (11.149) (x) @
XLUW|Y (11.150)

YR (11.151) ©
ZUW|Y (11.152)

ZUR|{X,Y} (11.153)

WIR (11.154)

2. wv-structure Orientation: For all (a, b) with common neighbour ¢ but not adjacent, i.e. have a-c-b

 If ¢ ¢ Sy, then there is a v-structure a — ¢ < b

X L RIS, VS C {Y,Z,W} (11.155)
X A 7|8, ¥S c {Y,R,W} (11.156)
X LY|S, VS C {Z, R,WY} (11.157)
Y 1 2|S.vS c {xX,R,w} (1.158) (R) (v)

Y A WIS, VS C {X,Z, R} (11.159) @ @
XUW|Y (11.160)

YR (11.161) e
ZUW|Y (11.162)

ZILR|{X,Y} (11.163)

WILR (11.164)

3. Meek’s rule Orientation: orient as many edges as possible subject to:

 Alternative direction yields new v-structure

N
N

* Alternative direction yields cycle (acyclic rule is of more priority)
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GG

The above procedure can produce identify the DAG up to its observational equivalent class.

[0 Search and Score Methods

We could also simply search in the space of all possible networks and select the one scoring the highest.

Some frequently used metrics include AIC and BIC

AIC :—QIOgP(Q\é> + 2dofg (11.165)

BIC:—2logP(g\é) + logn - dofg (11.166)

11.4.3 Network Parameter Learning

Basically, parameter learning (given BN strucure) is simply estimating edge weights, denoted ©. Two basic

methods are

* Bayesian approach

argmax P(©|D) (11.167)
S

* Frequentist approach, e.g. with MLE loss+penalty form

argmin — logP (D|O) + AP(O) (11.168)
C]

A trivial solution for categorical variables is

A~

. . N..
0. =P(X; =jlpa; =k) = 22 vi=1,...,J;, VieV (11.169)
J Ni.k

11.4.4 Average Causal Effect Estimation

Average Causal Effects on BN are defined in terms of do( - ) operator,
ACE(Y|H) :=E[Y|do(H = h1)] — E[Y|do(H = hy)] (11.170)

Calculation of ACE given known BN relies on do-calculus. A do( - ) operator would cancal all edges pointing
to the vertex, i.e. produce a modified graph Gy, ., what we need to estimate is the probability in the modified

graph.

Eg [Y|do(H)] « Pg (Y|do(H)) « Pg,, , (V) <2 B (X) « Data (11.171)

backdoor side : frontdoor side
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O do-Calculus

¢ Module invariant

P (X; = z;|do(PA; = pa;)) =P (X; = x| PA; = pa;) (11.172)

> The Adjustment Formula

P(Y =yldo(X =z)) = Y PV =y|X=xPA =2)P(PA, =2) (11.173)
z€{pay}
P(X =2,Y =y, PA, =
> ( - X”"’_ P?i’l - ?) (11.174)
z€{pay} ( _'$’ Y _'Z)
in which we use the Markovian factorization on G
P(X,Y,PA,) =P (Y|X,PA,)P(X|PA,)P(PA,) (11.175)

with X considered as assignment mechanism, Z considered as covariates, the formula shares the same idea

as equation 11.117 ~page 298.

Through adjustment formula, we could obtain ACE from observed data (without intervention ~~ with in-

tervention).

Example: assessing Y |do(X = x), in which PA, = {X, Z} with X being fixed by do(X = z).
P(Y=yldo(X=2))=> P(Y|X=2,Z=2)P(Z=2) (11.176)
ze{z}

Before Intervention

After Intervention do(X)
do(X)

Backdoor criterion

Given (X,Y") in BN, a ‘backdoor set’ Z is one such that Z:

— Blocks all paths with arrow onto X (i.e. backdoor side of X is blocked by Z)

— Z contains no descendants of X

then we could use the backdoor variable set Z to have the backdoor adjustment of Y'|do(X) as
P(Y =yldo(X =) =Y P(Y =yX =2,Z=2)P(Z=2) (11.177)

The selection of backdoor set Z is not unique. e.g. sometimes due to observablility problem we could only
obtain Partial DAG / have multiple methods to block the path, then we could pick proper nodes to form
the backdoor set.
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Example: assessing Y |do(X = z), where Z is an observable while TV is a hidden unobservable.

P(Y =yldo(X =2)) =Y P(Y|X=2,Z2=2)P(Z=2z) (11.178)
ze{z}

Example: assessing Y|do(X = x).

P (Y =y|do(X =z)) = Z PY|X=2,2Z=220==)P(Z=227=2) (11179
(z,21)€{(2,21)}
= Z P(Y|X=2,Z=2200=2)P(Z=227=2) (11.180)
(2,22)€{(2,22)}
= Z PY|X=22Z=220=2,2Z=72) (11.181)
(2,21,22)€{(2,21,22) }
P(Z =2,Z1 = 21,72 = 29) (11.182)

i.e. we could adjust for either (Z, Z1) or (Z, Zs) or (Z, Z1, Z2) as the backdoor set.

> Frontdoor criterion

Given (X,Y’) in BN, a ‘frontdoor set’ Z is one such that Z:

— Intercepts all paths from X to Y (i.e. frontdoor side of X is intercepted Z)
— No unblocked backdoor path from X to Z°

— All backdoor paths from Z to Y blocked by X

then we could use the frontdoor variable set Z to have the frontkdoor adjustment of Y |do(X) as

P(Y=yldo(X =2)) =) P(Z=2X=2)) P(Y =ylX'=2/,Z=2)P(X =X') (1.183)

Sbackdoor path from X to Z means containing a backdoor arrow of X, e.g. in the example, X < W — Y « Z, is blocked.
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Example: assessing Y |do(X = z).
P(Y =yldo(X =2)) => P(Z=2X=2)) P(Y=ylX' =2/, Z2=2)P(X =X
(11.184)
The derivation is using backdoor adjustment twice
P(Y = yldo(X = 2)) = . P(Y = yldo(Z = 2)) P(Z = z|do(X = )
PY =yldo(Z=2)=> , PY =ylZ=2X=z)P(X =2) (11.185)
P(Z =z|ldo(X =2)) =P (Z =z|X =x)

> General Rules of do-calculus*

11.4.5 Instrumental Variable Method*




Chapter. XII N AL ERR

Instructor: Pengkun Yang

Section 12.1 Properties of Stochastic Process

12.1.1 Basic Concepts

Some basic concepts about stochastic process / random process are introduced in section 10.2 ~page 268.

Here’s a brief recap.

A stochastic process is a mapping
{X;:teT}: Q=T xR (12.1)

« Forgivent € T, X;(-) isar.v. defined on €.

* For given w € Q, X.(w) is a function on 7, which is called sample path.

According to the continuity of index Fourier Transformset 7~ and sample path values, Stochastic process can

be categorized in discrete / continuous Time + discrete / continuous State processes.

Some functions of stochastic processes include

* Mean function:

nx(t) = E[X] (12.2)
» AutoCovariance function (ACVF):
Vst i= cov( X, Xy) (12.3)
» AutoCorrelation function (ACF):
pst = corr(Xs, Xy) = st (12.4)
\/Vs,sVt t
+ n'" order CDF:
Fxp(x1,ti; 20, t0;. . 20, tn) = P(Xy, <21, Xy < @0,..., Xy, < ) (12.5)

309
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12.1.2 Properties of Discrete Time Markov Chain

A basic case for Markov Chain is Discrete Time Markov Chain (DTMC)
[J Notations and Properties of DTMC

« State: denote the state space / phase space of DTMC as

X, €8 (12.6)

 Conditional Independency:

P (Xut1|Xo, X1, .., Xn) = P (Xp41|Xn) (12.7)

* State transition and transition probability matrix:
PO = {PIY = {P (Xp1 = j[Xx =1)}, ijesS (12.8)
transition pr matrix P is called a (row) stochastic matrix, with

0< PP < E:P“ (12.9)

» Time homogeneity: transition probability is independent of step / time
PR = p vk (12.10)

we usually focus on time-homogeneous DTMC.

* State diagram: a useful way to visualize DTMC, in which vertices / nodes for states and edges / arrows for

transition. Here’s an example of ‘Mickey Mouse’ diagram with six states:

o 1 9 3 4 3 49“\ 4/9
0 4/9 5/9 o 49 4-/)
1{1/9 4/9 4/9 1/9 7 4/9
L2 409 4/9 1/9 _ 9 19
3 4/9 5/9
4 1 519 5/9
5

0] Stationary Distribution

State transition between steps are like jumping in state diagram. Denote 7 (k) the probability distribution at

step k, then a transition is

w(k+1) = n(k)P®) = x(k)P (12.11)
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A stationary distribution / equilibrium of DTMC is the eigen distribution of transition matrix
™ = n*P = n* P!, Vi (12.12)

A sufficient condition for stationary state is the detailed balance condition

nf=> P (12.13)
J
ey Pj=m/(1-Py;)=> 7jP; (12.14)
j#i j#i
emibij = ;P (12.15)

Some concepts related to stationary distribution

* Reachable: we can arrive at j starting from ¢, denoted ¢ ~~ j
dn < cos.t.P (X, =j|Xo=1) >0 (12.16)
Sometimes I use the notation i j for ‘reaching j in k steps from ¢’
* Irreducible: every state is reachable from any other states

i~ Vi, jES (12.17)

* Periodic: the period d; for state ¢ is the greatest common divisor (GCD) of step-to-come-back.

di = ged{n : P (X, =i|Xo =14) > 0} (12.18)

Irreducible DTMC has the same period for all states.

For any two states ¢, j, with periods d;, d;. Then d; contains the following process:

d4
(8 29 i it meN (12.19)
there are infinite elements. then
di =cd{ky + ko + mdj; m=0,1,2,...} = dj = multiple of d; (12.20)

With the argument applied to all state pairs (i,j) € S X S, obviously d; = d, Vi € S

* Aperiodic: is the case that d; = 1, i.e. possible to come back anytime. For irreducible DTMC, if one state

is aperiodic, then all are.

Naturally if a node is self looped P;; > 0 (e.g. node 1 or 2 in ‘Mickey Mouse’ loops back with pr 4/9),

then all the states are aperiodic.

* Sojourn Time 7;: is the time to stay at the state

T; ~ Geo(1 — Py) (12.21)
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» (Classification of States.

Denote Hitting Time (without itself include) 7'2-+ and its mean

mFi=min{k > 1: X} =i} (12.22)
pi =E [7;7| X0 = i] (12.23)
— Recurrent State
P (7,7 < oolXg=1i) =1 (12.24)
in which
% Positive Recurrent
i < 00 (12.25)
% Null Recurrent
i = 00 (12.26)
An example:
1/2
12
where
pm=E[rXo=1 =) <2) — 00 (12.27)
i=1
— Transient State
P (1;" < oo|lXo=1i) < 1 (12.28)

0 DTMC: Irreducible & Aperiodic & Positive Recurrent = Unique Stationary Distribution 7* Exists

Given irreducible & aperiodic DTMC, we have
 All states have the same state classification: null recurrent / positive recurrent / transient.
« if all states are positive recurrent u; < oo, then stationary distribution exists.

Jim =3Py = - = mo0) = (1(O)P); = . ¥x(0) (12.29)
=1 7 7

* Further if states are positive recurrent p; < oo, then stationary distribution.

™= (12.30)
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The proofis a little bit complicated, but an intuition is direct. For a realization of Markov Process { X; }$°,,
in which {X;,, Xj,, ...} is the set that X; = i for any given 4, and {u;,, wi,, ...} = {i1 —i2,i3 —i2,...}
is the time-btw-event, i.e. u;; ~; 4.~ Ti+|X0 =1, Vj. Then

n

k 1 1
lim Ix,—; = lim = = — 12.31
n—00 tzl Xe=t k—oo Uj; + Uiy + ...+ Uiy, E [T;_‘XO = Z] s ( )

Comment: Ergodicity = irreducible & aperiodic condition. It creates link between phase structure and time

structure, which makes @ (time-average) converge in an appropriate sense to y; (phase-average).

Some algorithm about Markov Chain see section 5.6.2 ~page 188.
(] Concrete examples of DTMC

¢ Random Walk
e Gambler’s Model

* Branching Process

12.1.3 Properties of Continuous Time Markov Chain

Another case of Markov Chain is Continuous Time Markov Chain (CTMC)
[] Notations and Properties of CTMC

» Concepts of state and conditional independency are similar to DTMC

P (Xt | Xeos Xers - X)) =P (X440 | X, (12.32)

ntl
¢ Transition probability matrix
H(s,t) = {Hyj(s, )} = {P(X; = j|X, = )}, s <t (12.33)
with a trivial case that H(¢,t) = I. State transition could be expressed by matrix H (s, t) as
p(t) = p(s)H(s,1) (12.34)
¢ Chapman-Kolmogorov Equation
H(r,t)=H(r,s)H(s,t), r<s<t (12.35)
» Time homogeneity: transition probability is independent of time interval:
H(s,t) = H(0,t — s) (12.36)
* Generator of time homogeneous CTMC: The Transition Rate Matrix is

Q:= lim H(‘S)EH@) H(6) = I+ 6Q + o(6) (12.37)
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with Chapman-Kolmogorov Equation we could see that () is the generator of the transition matrix (group)

t=nd n—o0 n—00

t n
H(t) = lim H(5)" = lim (I + Q> = @ (12.38)
n
And note that H (¢) has 1 row-sum, } (e9h), =1

(X
d @),
0=t @ §2Qk (), =D _ Q=0 (12.39)
k

:@F—Z@mw (12.40)
ki

i.e. generator () has 0 row-sum.

Comment: with Gershgorin Circle Theorem !, ) as a diagonal dominant matrix, is negative definite, which

guarentee the convergence of H (t) = e?! < oo
+ Kolmogorov Forward Equation:?

ot
5(t) = PO (0)e2q = piQ (1242

Kolmogorov forward could also be deduced for some other specifically defined event / probability.

* Stationary Distribution: with 7* = 0 in Kolmogorov forward, stationary distribution of CTMC:
™ =n"H(t),Vt & 1mQ =0 (12.43)
thus yield the detailed balance in CTMC version:

TQ =0« mig; =0, Vi, j (12.44)

* Dynamics of CTMC: Each step (say, 0 ~» ¢ ~» ¢ + §) in state transitions in CTMC could be decomposed

in two sub-steps:

Sojourn:  T; ~ P (¢t : X, =iV0 < 7 < | X =)

(12.45)
Jump : pij ~ P ( Xy = j| Xt =i, Xyys # 1)
which has the following dynamics
T; ~ e(—qii)
i (12.46)
ng = (dij — )=

qii

Where sojourn time 7; is a continuous correspondance of 12.21. In both versions it is memoryless.

'Detail see https://vincent19.github.io/texts/DiagonalDominant/.

2Note that @ and e®* are commutable

Q i QZ—,t =e?'Q (12.41)
i=0 :



https://v1ncent19.github.io/texts/DiagonalDominant/
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O CTMC: Irreducible & Non-explosive & Positive Recurrent = Unique Stationary Distribution 7*

Given irreducible & non-explosive CTMC, we have
» All states have the same state classification: null recurrent / positive recurrent / transient

+ Stationary distribution exists < all states are positive recurrent

1
lim p;(t) = = (12.47)
t=00 —Qii i

[ Concrete examples of CTMC
¢ Brownian Process: CTMC with continuous states;

¢ Poisson Process: CTMC with discrete states;

12.1.4 Independent Increment Process and Martingale

Motivation: Sometimes a process is a ‘summation of all past events’.
* Independent Increment: Def. {X,} a independent increment process if Vg < t; < ... < t,,Vn
X, — Xy, 1LX,

— Xy Al X, — Xy, (12.48)

n—1 n—1 n—2
+ Martingale: Def. {X,} a Martingale if Vg < t; < ... < tp, Vn
E (X, | Xt, 1o Xug) = Xe, s (12.49)

with a technical condition of bounded expectation E [| X;|] < oc.

+ Martingale: Def. {X,} being a Martingale w.r.t. {Y;} if
E [ Xt Ve 1o Yao| = Xt (12.50)
with bounded expectation E [| X;|] < oco.
[l Concrete examples of independent increment processes

» Brownian Process: homogeneous events, probabilistic increment.

» Poisson Process: probabilistic events, homogeneous increment.

12.1.5 Ergodicity*
Section 12.2 Useful Instances of Stochastic Processes

12.2.1 Random Walk
Random walk is a renewal process X,, with each step W; takes value £1

n +1 wp.p
Xn:=Xo+ ) W; W;= (12.51)

i=1 -1 wp.g:=1—p
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where X = k is the initial position.
0] Simple Random Walk
Simple random walk is the case with no ends, i.e. X,, € Z
* State Diagram for Simple Random Walk
~N—
[k — 2] [k —1] k+1]
~Nq— ~q-~— Y~ ¢ N q— ~q -
* Parameters
Mean Function : p,, = k+n(2p — 1)
Covariance : 7y, , = 4pgmin{m, n} (12.52)

Xn—k—n2p—1) 4

CLT:
VAnpq

12.2.2 Gambler’s Model

— N(0,1)

Gambler’s model is the case with one/two ends, usually one of the ends is denoted 0, as Gambler’s ruin, and

the other denoted N as Gambler’s success.

Reaching 0 or N stops the chain, so are called ‘absorbing state’.

» State Diagram of Gambler’s model with two ends

™ D D P — ~P<
N2 q q §— Ng— g~

N\

1

» Gambler’s Ruin / Success: Denote Hitting Time (allowing itself included) 7; = min {n > 0 : X,, = i}, and

probability of ruin 7; and probability of success s; respectively

r; =P (X, = 0| X0 = )
si =P (X;y, = N|Xo=1)

with itertion relation

S =p-Siy1+q-8i-1, So=0,sy=1

ri=q-Titx1+p-ri1, ro=1,rny=0

(12.53)
(12.54)

(12.55)
(12.56)




Tuorui Peng CHAPTER 12. & A KahLidA230 4 317
we could get®
1 —(q/p)’
5y =— B 12.59)
1—(q/p)N (
(a/p)’ — (a/p)™
1—(q/p)N (1260)
* Mean Hitting Time T...o, 5y for i ~ {0, N'}: Tj. 10 n) = E [min{7o, 75 }[ Xo = i]:
Tivpony =P (14 Tipeqony) + ¢ (1 + Ticiqony) s Tnvegony = Towmqony =0 (12.61)
solution
(1 - (a/p)") (N —1i)
Trtons = 12.62
O 1= (g/p)M) (p - ) (12.62)
* One-end case (greedy gambler) is just having N — oo
1
L, p=
(12.63)

. . .. 1
Note: i.e. there is a phase transition at p = 5

12.2.3 Branching Process

Branching process / Galton-Watson Tree focuses on the case of population growth / epidemic infection /

nuclear fission chain reaction, etc. Each steps the state X,, denotes the number of individuals, update of state is

given as

Xy
Xep1 =Y Zij, Zijiid ~2Z, Xo=1
j=1

and we usually assume the simple case of Z; i.i.d. ~ Z.

* State Diagram

(12.64)

(12.57)

(12.58)
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e z-transform for distribution of X;:
Oi(s) =E[s7] =Y §P(Xy=j) L(s)=E[s?] =) sP(Z=}) (12.65)
j=0 j=0
and
Mi(s) = E[s*|X;1 = h]|P(X;1 = j) (12.66)
j=0
= (L(s)) P(Xi-1 = j) (12.67)
=0
=TI;_; (L(s)) (12.68)
(I (s) = L(s)) =L"(s) (12.69)
* Mean and Variance:
Mean : u(t) = I1;(1) = p(0)* (12.70)
Variance : var(t) = 1T/ (1) + IT}(1) — [IT}(1))? (12.71)
» Extinction Probability
0, =P(X,=0)=Y 0 \P(Z=j) (12.72)
=0
—L(0,1) (12.73)

The eventual extinction is 0* = L(6*), the fixed point of L( - ). There is a phase transformation at y = 1

1, <1

the first rootof L(0) = 6, pu>1

Convergence order at phase transition point:

ap”, p<l
P(XT>TL)N ¢

) n =

n

12.2.4 Brownian Motion

(12.74)

(12.75)

Motivation: Brownian motion / Weiner Process W;* is similar to a random walk model with p = ¢ = 1/2,

but with initial state Xy = 0, and ‘steps’ defined as ‘a short enough time segmentation’.

k
1 .
Wt:% = ﬁ E - T, Wi ~iid. Unlf{+1, —].}
i=

and have N — oo as a Brownian Motion (Donsker Theorem)

(12.76)

Rigorous definition of Brownian / Wiener Process: {IW; : T > 0} with 0 < 0 < oo is Brownian if

4Symbol W, for ‘Wiener’, sometimes uses B; for ‘Brown’.
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1. Starts from 0: P (W) =1
2. Independent increment: Wy, — Wy, LWy, — W, V[t1,s1] N [t2, s2] = 0
3. Zero mean Normal: W; — W, ~ N (0, 02|t — s|)
4. continuity: P (W; continuous) = 1
Properties:

¢ Parameters

Mean Function : p(t) = 0

(12.77)
Covariance : Y(t,s) = 02> min{s, ¢}
* m.s. indifferentiable
oW\ >
E N 12.78
(%) ] x (1278)
which is the reason why the plots for Brownian Motion always looks rugged.
* Conditional distribution / Brownian Bridge B;:
t(T —t
B; == W;|[Wr =0~ N(0, aQ(T)) (12.79)
— Dependent increment: non-zero covariance
2 . ts
VBridge(t, 8) = o | min{t, s} — T (12.80)
— Cross definition between Wiener Process and Brownian Bridge:
t
Bt = Wt - *WT
T (12.81)

W, := By +to?N(0,1)

i.e. Brownian Bridge is independent of the terminal of its corresponding Wiener Process B; L Wr.

12.2.5 Poisson Process

Motivation: The accumulate events happens at random, with ‘happening rate’ of events as A
i A
Ny_x = > v vi~ida, Bern(*) (12.82)
i=1

Rigorous Definition of Poisson Process: {NV; : ¢ > 0} with rate A > 0 is Poisson if
» Counting Process N;: Ng =0, N; € N
* Independent Increment: Ny, — Ny, L Ny, — N, V[t1,51 N [t2, 2] =0

* Poisson increment: Ny — Ny ~ P (\(t — s)),t > &°

A proof & another kind of definition concerning the intuition of ‘rate X’ is here: https://vincent19.github.io//texts/

Poisson/.



https://v1ncent19.github.io//texts/Poisson/
https://v1ncent19.github.io//texts/Poisson/
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Properties:

¢ Parameters

Mean Function : pu(t) = At

(12.83)
Covariance : y(t,s) = Amin{s, ¢}
* Arrival time: N;, = n means there are n events before (and including) ¢,,, denoted {t1, to, ..., t,}. PDF
le,TQ,...,Tn (tla t27 ... 7t’n) = )\nei)\tn]lo<t1<t2<...<tn (1284)
* Inter-event time: PDF of time-between-events {uy, ug, ..., un} = {t1,t0 —t1,..., tn —tn_1}
n
fUl,Ug,...,Un (ul, ug, . . . ,un) = H /\ef)miﬂuizo =~ Rt = 1”61‘()\) (12.85)
i=1
i.e. time-between-events satisfies exponential distribution
Ui ~iid €(N) (12.86)
* Conditional distribution
n! .
I To T Ne=n (t1, t25 o E) = t?H0<t1<t2<...<tn ~ Unif (lo<t; <ty<...<tn<t) (12.87)
is the PDF of order statistics® of i.i.d. Unif(0, ¢).
* Poisson Process and Martingale:
N; := N; — At ~ Martingale (12.88)

12.2.6 Birth-Death Process

Birth-death process looks like a one-end random-walk with ‘step’ as poisson r.v.(i.e. exponential time-

interval) The transition rate & diagram are:

0 1 2 3
0f—Xo Ao
o —p1—M A \ \ \
7O M N s 2
Q=2 H2 —p2 — A2 A2 = <y — r\m/,\m)/‘“
3 M3
» Kolmogorov forward: with a trivial notation that A\_; = pg = 0, we have
Pi(t) = Nic1pi—1(t) + pray1piv1(t) — (N + pi)pi(t) (12.89)

8See equation 1.47 ~ page 24.
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* Stationary Distribution: 7* = 0 yields

()‘ + ,uz)ﬂ' = Ai— 17T 1+ /’LZ+17Tz+1 (12.90)
Solution:
1 XA At
af =L 2 M2 L Z=1+) AoAs Aj‘l (12.91)
1 _0 — pafiy -
Z, 1 = J

Section 12.3 Applications

12.3.1 Innovation Sequence

Motivation of Innovation Sequence (¥7 /5 J¥%1): construction of linear MMSE L(X|Y1,Ys,...,Y,) =
L(X]Y). Assume that E [?] = 0, the prediction is

L(X|Y) =E[X] + cov(X,Y)var(Y)'Y (12.92)

which causes the problem of computation complexity when dimension n is large.

Innovation sequence fixed this problem by: instead of projecting on the whole linear combination Y space

of size (n + 1), we project on space of each Y; sequentially. i.e. define an innovation sequence

Vi =1 —EW] =Y -E[Y]] (12.93)
Yo =Ys — L(Ya|V1) = Y2 — L(Ya|Y1) (12.94)
V3 =Y3 — L(Y3|Y2Y1) = Y3 — L(Y3|Y2Y7) (12.95)

(12.96)
Y, =Y, — L(Y,|[Yno1... VoY1) =Y, — L(Y, |V, ... YaY)) (12.97)

where ‘innovation’ means each Y; contains the ‘new information without correlation with previous sequence’:

E [}7117]] = 0Vi # j. Computation of innovation sequence:

k—1
(Yi,Y;
Vi =Y — LYi|Vio1 ... V1) = Y — E[Vi] — ZL’“’J)YJ, k=1,2,....n (12.98)
= var(Yj)
with a trivial notation that Yy = 1
In this way a linear MMSE L(X|Y) could be written as
. - cov(X,Y;)
LIX|V) = L(X|Y) =E[X] + Y &8 10 X]+ Y L (X -E[X] V) 12.99
(XI¥) = L(XI7) [];W(Y) Z | (1299)

I think the idea here is similar to Gram-Schmidt orthogonalization (section 5.2.4 ~page 153), in which we
also construct new components by eliminating projection on previous parts. As a result we have a set of orthogonal
elements (here orthogonal means E [}7117]] = 0 and in Gram-Schmidt means ¢}g; = 0, ¢ # j). And the result is

a ‘change of basis’ of space.
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12.3.2 Markov Decision Processes

In decision process/episode, say {(s¢, a¢)}L_,, we need to determine a policy 7 to take action a; given state

St as
ai ~ (- |s¢) or simply a; = mi(s¢) (12.100)

then (conditional) transition probability is a model pre-assumed, say
St+1 ~ pe (- |st, ar) (12.101)

0J Optimization Target

The optimization target (in each step) is reward function
T¢(St, St41]at) (12.102)
The ‘cumulative reward’ from step ¢ is denoted Vit
Vi (se) = By (- st,a0=m(s0)) [rt (Sty Ser1]ar = m(se)) + ’yV(tf{)WTT(stH ‘st] (12.103)
where discount factor v < 1 is induced to focus on recent rewards. By expanding all iteration terms we have

VT (s1) = Estir1yrin) [Zy (S, 8r41]ar = mr(87)) ’st] (12.104)

and the final optimize goal is maximize total reward V

mo.p =argmax By 0.y (V325 (s0)] (12.105)
T0: T
T
=argmax Eg ;) [Z Yre (Sry Sryilar = WT(ST))] (12.106)
To:T =0

Comments:

* The joint distribution of s;1 711 has a complicated dependence on p,( - |s-, a,), making the optimization

hard to solve directly.

* Actually when making decision we should consider a complete process, i.e. I" — oo, but note that with

7 < 1, reward at far future is dispensable if rewards are upper-bounded 7, (s, sr4+1]|ar) < 7, then

o0 T
Z Ve (Sry Sryilar = o (s7)) < 7717_ (12.107)
=T v
which can be bounded below &7 for a large enough Effective Length 7
r log[(1 — 1 1 1
P <775:>T€z:0g[(7)€]~0< log >~O() (12.108)
1—7y logy 1—v “e(l-9) 11—~

"In this subsection I usually use the superscript -7 to specify the optimize target.
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0 Algorithm

Solving all my.7 jointly in equation 12.105 ~ page 322 is complex. It would be wiser to use the iteration form

equation 12.103 ~page 322 and separate decision making a; and processing p( - |si, a;). With expected rewards

denoted
Ry(st,at) = B, op(-sn.ae) [Te(56: ser1lag) |se, ad] (12.109)
total reward V... could be written as®
Vi (se) =Eg,mp(- [se.asmr(se)) |:7’t (8ty Stt1]ar ~ me(se)) + w(’;ﬁ;LTT(stH)]st] (12.110)
=Eopor(-|s1) [Rt (56> a1) + 1 Eqy s p( sp.00) [Vge(ﬁiiTT(St +1)‘st,at] }st} (12.111)

with the red part as State-Value Function, or V/-value; the blue part as Action-Value Function, or ()-value

VI (5t) =B o | Q" (st,) 31 (12.112)
:ﬁi}U:T(Snat) =Ry (51, 0t) + VB y 1 mp( - [s0.00) [V(Z:f)lfT(stJrl)‘st’at} (12.113)

Comments:
* The decision process (sg,ag) ~» (s1,a1) ~> ... ~» (s7,ar) is Markovian in ¢ = 0 ~» T sense, while

the reward propagation V.7 ~» Qr_1)w7 ~ Vir—1)wr ~ ...~ Qowur ~ Vooor is ‘Markovian’ in
t =T ~~ 0 sense. i.e. solution to optimal 77* obtained by maximizing total reward should go backward.
* Duality of optimal {V;"%Z }]_, (V-learning) and optimal {Q}“%.}7_, (Q-learning): With R;(s;, a;) actually

a given function (for given model p(s41|s-, ar)),

ViIiT(st) = Eoy o) [ B (86,a8) +YE g p(-[seiar) [Vgﬁfgp(&ﬂ) St,at} |St]
LT (s, a0) = Ri(se,a0) + VB, sy (- |star) |:E(1/ ~ore(-8t41) [Qa(ﬂifgr(stﬂ»at+1)!5t+1] ‘8t+17at+1}
(12.114)
are equivalent, with the same optimization core E, (. s,) [*[57]-
A Value function iteration for optimal policy 7*:
7f(s) = argmax Qf(s,a), t=T,T—1,...,0 (12.115)
a

Algorithm Value Iteration

L. Vi =0

2. fort=T,T—1,...,1

$Here the ugly symbol means, e.g.

vis influenced by which policies 7.

describes the process from when to when (as a function of which State)
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(a) Q-expectation step:

Q7 (s,a) = Ry(s,a) + YEzup(. s.0) [Vit1(5)

s, al (12.116)
(b) V-Optimal step:

7i(s) = argmaxQi(s,a)
a

Vils) = maxQj(s,a) = Qi(s, 7 (5))

(12.117)

i.e. a (Qq,V;) ‘backward propagation’.

O @-Learning
Motivation: for some more complex cases, €.g.

* The functional form of reward r¢(s¢, s¢11]at) or Ry(s¢, at) is unknown
* The transition probability s;+1 ~ p( - |s¢, a¢) is unknown

» The phase space is too large to compute point wise
Note that the above optimize process equation 12.117 ~ page 324 is an optimization w.r.t. Q¢( -, - ), we can first

learn the functional form of Q( -, -) (or its function approximation), and thus get the policy 7*. The ()-learning

process can have the following form:

temporal difference
current value

QU (54, a1) + Q) (s4,a1) +ar - <Rt(5t> a)+v- maxQ(sip1,0)  —Q(s, at)) (12.118)
a D

current value

estimate of optimal future value

new value (temporal difference target)

with some known final/terminal state {sgna }, Where Q(Sgnal, @) = 0, Va

Algorithm Q-Learning

1. Initialize a tentative Qio) (+,-),sayQ=0
2. fort =0,1,2,...until Q(-, -) converge:

(a) Initialize some $;

(b) fort =1,2,...until s; € {Sina1}: optimize the function form (approximation) Q( -, -)

QU (sy,a0) Q7 (sy,a0) + (Rt(sta ay) 4~y max QT (5141, 0) — QgT)(st’at)) (12-119)

St41 < Pi(se, ar) (12.120)
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12.3.3 Karhunen-Loé¢ve Expansion

Karhunen-Loéve Expansion (KL Expansion) is a coutinuous version of PCA section 4.3 ~page 129. The

idea is a decomposition
= Xigi(t) (12.121)
i
i.e. we add an extra step in mapping
X(): Q—={X;} »T xR (12.122)

a special set of { X, ¢;} is given by KL expansion.
[l Derivations
First note that R(s,t) := E[X(s)X(¢)] is a Kernel (see equation 9.100 ~page 254), with positive semi-

definition and symmetry. Then by Mercer’s Theorem, it has eigen-function decomposition

t) = ZM@'(S)@@) & (R(s, ), di) = Nidhi(s) (12.123)
where eigen functions are orthonormal
(6, 85) = /T@(T)Qsj(r) dr = 5, (12.124)
using {¢;} as function basis, KL coefficients are r.v.
Xi = (Xy, 91) (12.125)
with
B [X:X;] = (6| Xe) (Xe|d5) = (& R(s,1)|d5) = dijAs (12.126)
[0 Other Concepts
* Total energy:
E =E[(X;, X})] Z i (12.127)

* Rank: rank ({E [X;X;]}) = #(\; # 0) is also the rank of the process.

12.3.4 Kalman Filter

O Model

Kalman Filter is an auto-regressive / iterative filter for estimating the state z; from observable’ z;. The
model structure, as in figure 12.1 ~page 326, is a Hidden Markov Model (HMM) with linear operator.

State: xp = Frrp_1 + wi (12.128)

Observable: z, = Hpxp + vk (12.129)

Here I prefer the name as in Quantum mechanics ‘Observable’.
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where wy, vy, is noise / random error, usually with (multivariate) Normal distribution

wy, ~ N (0, Qk), vg ~ N(0, Ry) (12.130)
the initial state denoted
To ~ N(i’olo, P0|0) (12131)
State z;  Observable 2, Noise ~~>
Linear Op o
Wi,
T Zh—
k—1 k—1 : F,
_—e— e _— _— - _——_— - i.

5

|
|
|
|
|
|
|
|
|
I | !
|
Y | : Ty ye 2,
[ ! ! /
- |
" |
|
|
|
|
|

12.1: HMM structure of Kalman Filter

O Algorithm

Motivation: what we could observe is {z; } sequence, with pre-specified { Fi., Hy, Qx, Ry }, which are part

of the model. We hope to (linearly) estimate the value and variance of the hidden state x,

value: &1 = L(xg]21 ... 2p-1) (12.132)

variance: Pp,_q := var (xk — i’k“g,l) (12.133)

Algorithm Kalman Filter

1. Initial State: xo ~ N (Zo, Fojo); Model given { F}., Hy, Qy, Ry };
2 fork=1,2,...
(a) State Predict: - p_qjp—1 — " gp—1
prior state: Tgx—1 = Frlp_1jr—1 (12.134)
prior cov: Pyy_y = FiPy_1k—1F} + Qk (12.135)

(b) Information Update: weighting btw. - ;1 and -

innovation seq: Zx = zx — HgZpp—1 (12.136)
innovation cov: Sy = HyPyp—1Hj, + Ry (12.137)
(Optimal) Kalman gain: K}, = Pk|k_1H,'§Skf1 (12.138)

—1
= Pyjp—1 Hy, (Hy Py H, + Ry) (12.139)




Tuorui Peng CHAPTER 12. & A KahLidA230 4 327
(C) State Update: *klk—1 = k|k

posterior state: Zy, = Tgp—1 + KiZg (12.140)
= g1 + Ki (26 — Hipgp—1) (12.141)
= (I — KpHg) Zpjp—1 + Kizg (12.142)
posterior cov: Py, = (I — Ky Hy,) Py—1 (I — KiHy) + Ky R K], (12.143)
= (I — KxHy) Prji—1 (12.144)

[l Derivation Details

» Key concepts in Kalman Filter:
prior state: @y, = L(wgl21 ... 21-1) (12.145)
prior covariance: Py, = var (z — &gp_1) (12.146)
posterior state: @y, = L(zg|21 ... 21) (12.147)
posterior covariance: Py, = var (xy — &) (12.148)
Kalman gain: Kj, (12.149)
(al) prior state prediction
£k|k:—1 :L(l’k|21 ... Zk—l) = L(Fkxk—l + wk|2’1 . Zk—l) = Fk"i'k:—1|k:—1 (12.150)
(a2) prior covariance prediction
Pyt =var (zg — Zg_1) = var (Fr(zr—1 — E_15-1) + wi) = FuPy_1p1 FL + Qe (12.151)
(bl) innovation sequence of zj,
Zr =2k — L(zk|21 ... 2k-1) = 2k — L(Hgxp + vgl21 - .- 25—1) = 2k — Hki'k\k;—l (12.152)
(b2) innovation sequence variance
Sk = var(Z) =var (zk - Hk-ffjk|k;—1) = var (Hk(:vk — Tpph—1) + vk) = I—IkPk‘k_ll'{,'C + Ry (12.153)
(b3) Optimal Kalman gain is obtained by
Erk = Epppt + Lk — B[] |Zk) = &yt + cov(an, Z)var () 2 i= Eppo1 + KiZe  (12.154)
i.e. Optimal Kalman gain in the combination coefficient in MMSE.
K, =cov(zy, 2 )var(Z;) ™! = cov(xy, Hy(xy, — Tpp—1) + vk)Slzl (12.155)
=cov(T), — Tp|p—1, Th — g%k‘k_l)H,’CSk_l (12.156)
=Py H;.S; ! (12.157)
here we use the property of MMSE

COU(.ka‘kfl,IEk _j:k|k71) =0 (12158)




328 CHAPTER 12. & J [a#Lid 42385 vincent19

(c1) posterior state update

Ty = Thpp—1 + KiZp = ([ — KgHy) Tppp—1 + Kz (12.159)

(c2) posterior variance update

Py, =var(zg — Tp,) = var (z — Tpjp—1 — Kr(2p — Hk:%k|k_1)) (12.160)
=var (z — Tppp—1 — Ke(Hpar, + vp — HyZgjp—1)) (12.161)
=var (I — KpHy)(z — Zpp—1) — Kyor) (12.162)
=(I — KHg)Pyp—1(I — KiHy)' + KRy K, (12.163)

further if K, takes optimal Kalman gain,

KSyK}, = Py H K}, (12.164)

we have a simplification
Py =(I = K Hy) Pyg—1 (I — KpHy)' + Ky Ry K, (12.165)
=Pyp—1 — KiHyPyjy—1 — Pyp—1H. K}, + Ky, (Hy Pyjj—1 Hy, + Ri) K, (12.166)
=Pyh_1 — KxHePajoo1 — Prjp 1 HLK), + K35, K, (12.167)
= (I — KpHy) Pyjp—1 (12.168)

O Comments

* Optimality of Kalman Filter as a MMSE: in equation 12.160 ~ page 328, posterior variance does not depend
on a concrete form of Kalman gain, thus in which Kalman filter can be selected as some other ones K}, (e.g.

to avoid numerical instability). The optimal Kalman gain is the one that minimizes tr (Pk|k)

Ky, = argmintr (I — KHy)Pyp—1(I — KHy)' + KR K') (12.169)
K
obtained by
otr (P,
8(Kk|k) =2 (Hkpk\k—l), + 2K Sy, =0= K} = Pk\k:—1H;'qS;;1 (12.170)

* Role of Kalman gain Kj: in posterior update equation 12.159 ~page 328 we can see that K, looks like a

weighting factor btw. history information Zy;_; and new observation 2.

Ty = (I — KpHy) Bpp—1 + Krzp (12.171)

and note that the Kalman gain update

Prjj—1 =Fp P11 Fy + Qr (12.172)
Sy =HyPyj_1Hy, + Ry (12.173)

Ky =Py H,S; ! (12.174)
Py = — KxHy) Pyjie—1 (12.175)

""Matrix differentiation see section 4.1.2 ~page 118
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only involve {Fy, Hy, Qy, Rx} and initial Fy. It means Kalman gain K}, could be computed offline. In

actual application scenario we can just compute state iteratively

Tppp—1 =FrTp—1jp—1 (12.176)
Ty = (I — KpHy) Tppp—1 + Kpzp (12.177)
Pyji—1 =FrPy_1jj—1Fy, + Q (12.178)
Py = (I — KyHy) Py (12.179)

* Asymptotic form: when step £ — oo, we may have limit
F,—F, H,—H Qp—Q, Rp—R (12.180)
then Kalman filter and variance estimation have asymptotic form by solving

Po =F (Poo — P H' (HP H + R)™ HPOO> F'+Q (12.181)

Koo =P H' (HPoH' + R)™ (12.182)

and the asymptotic update

Gpp1 = F (I — KooH) & + FKoozp (12.183)

» Extended Kalman Filter (EKF): Kalman filter assumes a linear model with noise. Usually it’s a good-enough

approximator to the real case. For non-linear case, i.e. Extended Kalman filter, has model

State: xp = fr(zr—1) + wi (12.184)
Observable: z = hg(zx) + v (12.185)

the update could be obtained by replacement

0 . 0 .
Fy = %fk (Zh—1j-1) Hy = %hk (Zkj—1) (12.186)

» Kalman-Bucy Filter is the continuous time version of Kalman filter, with model

. da(t)

State: T F(t)x(t) +w(t) (12.187)
Observable: z(t) = H(t)z(t) + v(t) (12.188)
where w(t), v(t) are white noise.
Kalman update:
dfiff) = (F(t) — KO H®)#(t)) + K(t)2(1) (12.189)
d];f) =F(t)P(t) + Pt)F(t) + Q(t) — K(t)R(t)K(t)’ (12.190)

with Kalman gain

K(t)=P@t)H(t)R(t) ™" (12.191)
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12.3.5 Linear Time Invariant Systems

Linear Time Invariant Systems (LTI Systems) models data generation process as a convolution

x(t) = /]RZ(T)h(t —71)dr = (2% g)(t) (12.192)

where | for linear, and h(t — 7) for time-invariant.
LTI systems could be conveniently parsed with Fourier Transform, introduced in section 12.4.3 ~page 334.
O Cross Correlation Structure

Usually we consider weak stationary case, with notation:
ux, pz, Rz(t)=E[z(s)z(s+1t)],Vs, Rxz(t)=E[z(s)z(s+1)], Vs (12.193)

corresponding Fourier transform:

Rz(t) = Sz(w), Rxz(t)=Sxz(w), h(t)=HWw) (12.194)
Relations:
px =V2mpzH(0) (12.195)
Rxz(t) =(Ryz * h)(t) (12.196)
Rx(t) =(h* Rz« h)(t), h(r)=h(-7) (12.197)
Sxz(w) =V21Sz(w)H (w) (12.198)
Sx (w) =278z (w)|H(w)|? (12.199)

12.3.6 Wiener Filter

Goal of Wiener Filter is to estimate some x,, from z; : ¢ € [a,b] with a linear function in MMSE sense
Ty = L(xy|2e ¢ t € [a,b]):
b
= / z-h(t,u)dr,  worth(-) =argminE [(z, — &,)?] (12.200)
a h

the solution, as explained in section 12.4.1 ~page 331, satisfies E [(z,, — Z)2:] = 0, Vt € [a,b], which
yields

b
R (u,t) = / Ry(t,7)h(u— 7)dr, Vit € [a,0) (12.201)
usually we also consider weak stationary case, with [a,b] = R
Rxp(u—t) = / Ry(r — )h(u—7)dr, Vit [a,b] (12.202)
R

O Non-Causal Solution A general solution L(x,|2; : t € R) is easily obtained by Fourier transform, with the

convolution expression of estimator

Sxz(w) = V2rSz(w)H (w) = H(w) = \/S%Z% (12.203)
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with MSE!!

!sz(w)|2
MSE = / Sy S (12.204)

0 Causal Solution

Causal solution demands that estimation cannot use future information, modelled as

br = L{zr|z : t € (—00,0)), T >0 (12.205)
ic.
By = /R eh(—r)dr,  wrt h(s) = h(s)n(s) (12.206)
Rxz(T +1) :/RRz(T 4 )h(—7)dr, V>0 (12.207)
MMSE condition
[T Sx], = [S2()H (), (12208)

where |- |4 corresponds to the causal component of FT

f@) =n(®)f(t) + (1 —n(®) (1) = [F(w)y + [F(w)]- (12.209)
1 & ,
F(w)]y =—= t)e "t dt 12.210
Pl == [ 1) (12210)
with factor decomposition Sz(w) = S} (w)S, (w), where S} is a causal function'?, we have solution
1 wT
H(w) = — [e SXZ] (12.213)
SZ SZ +
Notes on causal function:
» Convolution is causal invariant:
(nf *ng)(t / F(r)g(t —7)dr = 0ift < 0 (12.214)

Section 12.4 Miscellanea

12.4.1 Minimum Mean Squared Estimator

Motivation: Here’s a signal transmission process in which source is X ~ fx and observationis Z ~ fz, we

need to find a (theoretically best) information process function g( - ) such that we can reproduce X with g(Z) € .#

"Derivation uses Parseval’s Theorem equation 12.243 ~page 334.

12 An illustration: since convolution function is causal invariant, then

.

== (12.211)
.

e} i e}
=0 =0

is also causal invariant, i.e. H = [H];+ = e = [e"]4, then we could have

§ =8t = e+ = leletlsl- (12.212)
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with minimum ‘error’ (Note that X and Z can be dependent)., i.e.
§=argminE [(X — g(Z))? (12.215)
9(-)eF
which is the Minimum Mean Squared Error Estimator (MMSE). '3
0 General Solution to MMSE
The solution to MMSE is that
§(2)e 7z
g(-)s.t 2) ( z . . (12.217)
e:=X—-g(2) Lh(Z), YhZ)e F(Z)
here L in the sense thate L j < E[yy] =0
Denote .#(Z) 3 g(Z) = §(Z) + ch(Z), h(Z) € F(Z), then
E[(X — 9(2))%] =E [(X — §(2Z) — ch(Z))?] (12.218)
—E [(X — §(2))] - 2E[(X — §(2))h(2)] + PE [n(2)?] (12.219)

S 16X — §(Z) Lh(Z): E[(X - g(2))?] = E[(X - §(2))?] + <E [n(2)?] > E[(X - §(2))?]

« If X — §(Z) L h(Z), then for |¢| small enough we could have E (X —9(2))?] <E[(X -

which gives that the above condition is necessary and sufficient.

The above expression is similar to the projection operator onto space .7, i.e.

(] Properties of Projection Operator 11, (where function space .7 is a kind of linear space )))

* Linearity

Hy(aX + bY) = aHV(X) + bHV(Y)

* Project within subspace: for Vo C Vi

1y, (X) = Iy, (HV1 (X))

* Projection onto orthogonal space: for V; L Vs

HV1@V2 (X) - HV1 (X) + HVQ (X)

(2))?].

(12.220)

(12.221)

(12.222)

(12.223)

Note: the function space % (Z ) (by default) is the arbitrary measurable function space := V(Z ), but you can specifically select a

proper one, e.g. linear combination of some power function V(1, Z, Z2) := {a + bZ + c¢Z*}apcer C F(Z).

I am not quite sure (actually I believe it’s wrong lol) but maybe for some commonly used function form, we could view that

V(Z) VI Z"} )

(12.216)
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UJ Important Cases
« F(Z) =Y (Z): Solution is
E[X|Z] (12.224)
in which
EX|Z] e #(2)
(12.225)
E[(X -E[X|Z])g9(2)] = E[Xg(2)] - E[E[9(2)X|Z]] = 0
* F(Z) = const: Solution is
E [X] (12.226)
in which
E[X]eR
(12.227)
E [(X — E[X])|const] =0
which is also a kind of variance definition:
var(X) = min £ (X —o)?] (12.228)
« Z(Z)=V(1,7) ie. linear conbination of Z as a + Z'b. Solution is
L(X|Z) = E[X] + cov(X, Z)var(Z)~! (Z ~E {ZD (12.229)
in which
E[X] + cov(X, Z)var(Z)~! (Z “E [ZD e V(1, Z)
. . (12.230)
E[(X - L(X|2)(a + Z’b)} =0
12.4.2 Conditional Independence
Conditional independence : say X and Z are conditionally independent given Y, i.e. X-Y-Z
Ixivz = Ixyy © fxz)y = Ixiyfz)y (12.231)
Further if (X,Y, Z) ~ N(u, X) (ajoint Gaussian Dist.). Then
cov(X, Z) = cov(X, Y )var(Y) tcov(Y, Z) (12.232)
it could be deduced using linar MMSE + innovation sequence of jointly Gaussian
cov(Z, X — L(X|Y)) = 0= cov(X, Z) = cov(X, Y )var(Y) Lcov(Y, Z) (12.233)
or use equation 4.71 ~page 124, in which X; = (X, Z2), Xo =Y
Sy sy = Sx - Sxy — 9 Zyx Uxz - Sxv iy Sy S Sys = Sxy S (12.234)

Yzx — Sy Sy Syx Xz - Szy Sy Syz
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12.4.3 Fourier Transform and Convolution

O Fourier Transform

Fourier Transform (FT) g(¢) = G(w) is a link between time domain and frequency domain'*

9(t) = —= g et dw
g(t) = G(w) : v (12.235)
Gw) = —— t)ewtdt
(@) = 5= feolt)e
Fourier operator is denoted .7 | - |
G=7F|g] e g=F G (12.236)
Properties
* Linearity
Flaf + Bg] = aF [f] + BF [g] (12.237)
* Time shifting / Frequency shifting
gt -9 =Gwe ™  Gw—d)=g(t)e™ (12.238)
* Convolution Theorem
Ffxg] =V2rFG (12.239)
where convolution operator is
(f = g)( /f gt —1) (12.240)
* Differentiation
& (t) = (iw)*G(w) (12.241)
QI = '
¢ Duality
1
FZ O] = 5_9(=) (12.242)

 Parseval’s Theorem:
1 , .
/ f(t)g'(t)dt = / —— F(wy)e™ dwy / —GT(wg)e_“"Qt dwo dt (12.243)
R R R V2

/.
1
:/ / F(wl)GT(wg)/e’(wl_“’Q) dt dw; dw (12.244)
w1 Jus 2w

F(w)GT(w) dw (12.245)

"*For symmetry consideration, I usually use in both transform and inversed.

Ver
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(if the integration above can be properly defined.)
A physical intuition is the energy convervation in both time domain and spetrum domain (which is also a

1
V2T

reason I prefer the

transform —- no extra coefficient in this energy conservation)

/|f(t)y2 dt:/|F(w)\2 dw (12.246)
R w

Instances

* Dirac ¢ function for unit impulse at ¢

s 0, s<to
/ 5t — to) dt = (s — t) = (12.247)
—> 1, s>t
some commonly used definition of § function:
.1
6(t) = lim <1 ajpcicays (12.248)
. 1.
i(t) = Ahino Hsmc(At) (12.249)
Integration of Dirac § yields
/ d(t —to) f(t)dt = f(to) (12.250)
R
FT of Dirac § is harmonic wave
1 . .
St —tg) = ——e W ol = \/or5(w —w 12.251
( 0) \/% ( 0) ( )
* FT for periodic function g(t) = g(t + T') is Fourier series
-27Tn
g(t) =30 en €T
S (12.252)

_ —j2mny
Cn = T fone period f(t)e CTrdt
where ¢ is the DC component of the function.

* Discrete Time FT: discrete time case can be viewed as a sample of frequency 7" from continuous case

gr(t) = >0l g(t)d(t —nT)
1 } (12.253)
Z lgr] (w) = Ner T g(nT)e—wnT

which dual with FT for periodic function.
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Instructor: Wanlu Deng

Section 13.1 Calculation Preparation

Some useful calculation results / tricks are listed in this part, including r.v. distribution / integration, etc.

13.1.1 Calculation

* Gamma integral

(o9}
F(z)z/ t*~letdt, Ret >0 (13.1)
0
— scaling A\ form
oo
T
/ e M dt = =) (13.2)
0 A
— Gaussian integral
0o _ptl
1
/ oo g = & pPE2y (13.3)
0 2 2

with o = By gives the normalization const of Gaussian distribution
o

_ 2 2 1
Jre 27 dt = 2 x TJF(f) =270
13.4)
1 e 7 (202323 (
Jpt? e 207 dt = x(g) () =02
2o V2o 2 2
— complementary formula
m
P —-=2) = P (13.5)
— special values
1
1) =1, I‘(§) =7 (13.6)
— recursion
I'(n)=(Mn-1), n e Nt
Fn+ =) =+m TR neN

(factorial expression)

336
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* Beta Integral

1
B(p,q) = / (1 — 1) de, Rep, Req >0 (13.8)
0
— symmetry
B(p,q) = B(q,p) (13.9)
— Gamma function expression
I(p)L(q) . . (p—Dlg—1)!
B(p,q) = =———==, forinteger p,q = ———————*— (13.10)
PO =T g i e
13.1.2 Useful Distribution Recap
* (p-dimensional) Normal distribution Z ~ N (u, X2)
1 ElZ]=un
fz(z2) = (2m) P17 2 exp —5GE-wWE G-, with 7 (13.11)
var(z) =%
+ Gamma distribution X ~ I'(a, \)
«
A E[X] =+
fx(z) = ——z%te™®  with A (13.12)
[() var(X) = 2
22
— summation
PO i A) =) T, )), T(1,A) =e()) (13.13)
* x2-distribution X ~ 2
1 n z E X% =n
fx(z) = mﬂ)xa—le—a, with ) (13.14)
22702 var(x2) = 2n
— relationto I
n 1 9
IS 5)=xa (13.15)
* Beta distribution X ~ Beta(a, 3)
«
1 —2)ft T(a+8) ., E[X]=
x) = = 71— 2)f with at+p
=" ew(a g~ T’ ¢ () op
(a+B)*a+B+1)

(13.16)
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e t-distribution T' ~ t,,

SRIC o RIS (T S
fT(t)_\/ﬁF(%) <1+y> JvBeta(%, %) <1+u> ’ N var(X) = v

v—2
(13.17)
* Wishart distribution: a multi-dim version of x2. If Z1, ..., Z, i.i.d. ~ N,(0,A), then
m
W, = Z;Z] ~ Wishart,, (A) (13.18)
i=1
expression see section 4.2.3 ~page 125. Kernel term
m—p— 1
fw (w;p,m, A) o |w| 7 exp {—2tr(A1w)] , w € RPXP (13.19)
* Dirichlet distribution : A multi-parameter version of Beta distribution (x1, 9, ..., 2 s) ~ Dirichlet(a, ag, . . .

W.L.L. Z}le zj=1

r (ZJ 1 0‘]) J . J
! Hzf‘f‘l, Say=1 (13.20)

fX('Ilava"'?xJ) =

Beta distribution is the case of J = 2.

A Inverse distribution. General formula for Inv- fx

1 1 1
X~ fx(@), Z=+, f2(2) = 5/x(2) (13.21)
z
Instances:
1
= Inv-I'(a, \) = ERY
E[7] =
fz(z) = FA( )z*a*e*%, with o=l (13.22)
«
var(Z) = (@ 12(a=2)
2 2
— (scaled) Inv-x?(n, s?) % =Inv-I'(=, —)
n _ "N 2
. nz _n_q _ns? . E[Z]_TL—28
f2(2) = 272 e 2=, with on2gh (13.23)
22P(§) var(Z) = ( 2)2( 4)
n—2)%(n—
— Z ~ Inv-Wishart(A) < Z—! ~ Wishart(A)!
— fw (=Yg A) 2O o 2| exp |~ Ler (a1 13.24
Fa2) = (s, m, ) 270D o o] exp |~ ar(A 1) (1324

2

"In R. and Python., functional input form is Inv-Wishart(A ~') = (Wishart(A)) ™"
—1 -1

o4
9A 9A

ZProof note for Jacobian : For an arbitrary matrix =]A|72 dim 4
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Section 13.2 Elements in Bayesian Model

Key idea: Bayesian rule

P(Y|X)P(X) P(Y|X)P(X)
P(X]Y) = = (13.32)
P(Y) fQXIP’(Y]X)IP’(X) dX
In both Bayesian & Frequentist statistics, we care about updating our ‘belief” on parameter.
P(O)P(y|0
P(oly) = LW pig) pype) (13.33)
posterior prior data likelihood

13.2.1 Prior Selection

Selection of prior distribution p(6) could greatly influence posterior because it provides prior information

about the parameter. The selection could be flexible, here are some frequently-used approaches

* Conjugate Prior: defined for the case that (conjugate) prior and posterior belong to the same distribution

1. First construct mapping RP*P RP e.g. by r=ipt+; = Aij

2. Differentiation: where e; is the unit vector on the ™ coord.

0A;" _9giA™'q; _ 9tr(A” i)

9A oA 94 (13.25)
=—A'ggAT = ATA! (13.26)
045 1y
= oA =— Ay A} (13.27)
kl
aa;! _ _
> S () eaT,, (1329)
where ® is Kronecker product R*** x R”*¥ s R***"" for
( (XJ ® YX/ )iuti kvt = Uie Vji (13.29)
which has property
UeV|=|U"|V]* (13.30)
3. Deternimant for Kronecker product
AT _|loa? n—1 —1 —2p
51 | =153 =||-(A)TeAT| =14 (13.31)

Further here for Wishart distribution, we have a constraint for positive definition. The constraint causes a ‘degree of freedom reduction’
oA~

— Af(dimAJrl).
4| = Al

SO
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family. 3
p(0ly) o< p(y|0)p(0) € F(O), Vp(yld) € F(Y0) &p(0) € F(O) (13.36)
Instances see
— Binomial Model

Poisson Model

Exponential Model

UniNormal with known variance Model

— UniNormal with known mean Model

— Multinomial Model

— UniNormal Model

— MultiNormal Model
* Non-informative Prior: Jeffrey’s Prior. Idea is to choose a distribution ‘covariant’ with parameterization

4. i.e. under different parameterization, say # = ¢, we should follow the same deduction method to get

corresponding prior py = py, that could covariant with parameter transform

o

m(®) = po(6) |25

(13.37)

Notice that (sqrt) Fisher Information |1(8)|*/? meets such requirement, which gives Jeffrey’s Prior.

Odlog L(y|6) 0log L(y|0
L) = Diylg) = 116)] =i, | 7B f” (13.38)
00 00
OL(y|¢) OL(y|¢)
=|E 13.39
4l % 09 (1339
9¢
I 77 13.40
o |2 (13.40)
So Jeffrey’s prior is expressed
Petirey (8) o |1(8)['/?
Note: Usually Jeffrey’s is an improper prior (diverge).
* Other suitable prior that reflects our knowledge.
3Concept of distribution family see section 2.1 ~page 37. In this section we use notation
f(x;0) € #(O) (13.34)
to express the distribution family generated on parameter space (a, A) € A X A, e.g. family of " distribution
Fr(A,A) (13.35)

AL covariant — IR MR “EREE” X
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13.2.2 Posterior Distribution

After wisely select the prior, we can have it combined with data and get formula for posterior

p(0ly) o< p(0)p(y|0) (13.41)

which is a function of 6, so we just need to take care of §-terms and normalization condition would help

fixed the constant.

O Calculation Trick
* Identify the distribution with the variable related term.

Example: Obtain the predictive distribution of Poisson model with conjugate Gamma distribution

N QYi
pwlo) =]] o e (13.42)
i=1 7Y
p(0) ~I'(e, B) (13.43)
7 )
p(ly) o / 97,6‘99“‘16‘5991\’%‘” do (13.44)
y!
:;/9a+Ny+gle(ﬁ+N+1)o 40 (13.45)

1 T(a+Nyg+79)

= a— 13.46
7! (B + N + 1)a+Ny+y ( )
_ - a+Ny 1]
x oz+Ny~+y N ( B+N 1) (13.47)
Y B+N+1 B+N+1
~Neg-Binom(a + Ny, 5+ N) (13.48)
* Get marginal posterior with Conditional probability formula
p(a, Bly)
p(Bly) = —/————= (13.49)
(Bly) p(alB,y)

in which L.H.S. is free from «, so R.H.S. should be invariant of a, i.e. take the same value for any « value.

We can simplify the calculation by taking some convenient values.

Example: Marginal posterior distribution in Normal model.

(s 021y, 1o, 05/ K03 10, 03) ~N-I0V=X?(pin, 07 / K Vi 07 (13.50)
V3ol + ko — po)? + NMSE
p(0?| 15y, ko, 0/ Ko; Vo, o) ~Inv-x?(vy, + 1, 21 ( ) ) (13.51)
Up+1

2 2 2
2 2 p(M,O' ‘%MO;UO/HO;VO,UO)

plulY, ko, 0g/ Kos Yo, 0g) = (13.52)
(ul o/ 0) p(o?|p; y, ko, 05/ Ko; Yo, 05)

(take 02 = 1) (V202 + ko(p — po)? + NMSE)~(nt1)/2 (13.53)

= (0 + (V= 05+ O~ )+ = )

(13.54)

2N~ n)/2
N <1+ Fin (1 — fin) ) ~ by (fi; 02 [ in) (13.55)

Vno2
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13.2.3 Asymptotics

The Maximum A Posteriori (MAP) describes a point estimation by maximize posterior distribution of pa-

rameter, say
0= arg max p(f]y) = argmax p(#)p(y|6) (13.56)
The maximizer has consistency at large sample
p(Oly) — 6(0 —0%), asn — oo (13.57)

The maximizer would further give the asymptotic normal distribution centered around it. Use the taylor

series at 0:

9000’
= p(fly) =N (0,Z()""/n) (13.59)

g p(6ly) =togp(0ls) + 50— 07 | ZREEE | (6-6)+ o) (13.58)

Note: Here é, as is calculated from the data, is considered fixed, while 6 is the random one. It’s just in contrast
to frequentist’s version where 6 is random while 6 is fixed. (The estimator is also different, here maximizes

posterior p(6|y), frequentists maximize likelihood p(y|0))

13.2.4 Predictive Distribution
Generally speaking we are studying the posteior predictive distribution
Pros(7) = Eapy [p716)) = [ p(10)p(61) 00 (13.60

Related concept:

» Expected log Prediction Distribution for New Data (elpd). Where the ground truth distribution of g is
denoted f(7).

etpd = 5 1og [ p(i16)0(619) 9] = | 108 [ p(ai6)0(61s) 00 (1361
Y

At large sample, the df integration is dominated by 6 = argmax p(f|y), yielding®
0
elpd = /log/ (710)p(0]y) 46 f (i /f )log p(7|0) djj = elpd, (13.62)

13.2.5 Model Checking and Comparison

U] Posterior Predictive Checking

The idea is similar to construct p-value in hypothesis testing. But now we are using the posterior predictive

distribution to check the model fit.

3The integration method is called ‘steepest descent’.
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Posterior distribution given by probability model M denoted paq(0|y). We could further properly define a
test statistic 7'(y), and the posterior predictive distribution of T'(y) is

paT@I) = [ HT@IOPMOly) 6 (13.63)
which could be easily simulated by
1. Generate 8 ~ pr(Oy),i=1,2,...,S;
2. Generate ) ~ p(7]6);
3. Compute T'(§¥) to form pr(T|y);

4. By calculating the p-value corresponding to our data Ty = T'(y), i.e.

szMrT@)>1u::/ﬁgmmﬂwp@wnmAMyww (13.64)

S
5 Lo
ﬁ:Zl_l Y;yU)ZTo (13.65)

and check, say p < 0.05 to rejct the model.

Note: the test statistics 7'(y) should be chosen carefully.

0 Model Performance Measure

Section 13.3 Simulation

In Bayesian inference, the key target is posterior distribution

p(0ly) o< p(0)p(y|0) (13.66)

which can be
* Intractable: ugly kernel term.
» High-dimentional: multi-dim parameter sapce ©.
* Unnormalized: with an unknown normalize constant 1

p(y)

so usually a closed form is not accessable. Simulation is needed to carry out further inference.

13.3.1 Random Number Generation and Simulation

Basic knowledge about simulation methods were covered in section 5.6 ~page 185. Here are some topic
contents:

* Linear Congruential Method for U (0, 1). Other complicated distribution starts from uniform distributed r.v.

* Quantile Method/Inverse Transform Method: Use inverse CDF to obtain r.v.

Xi=Fx'(Ui) ~ fx (13.67)
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* Acceptance-Rejection Sampling: Suitable for intractable CDF or high-dimensional cases

* MCMC: Deal with high-dimentional case or unnormalized distribution
* Importance Sampling Estimator: Quick way to obtain some observable

In the following part I would briefly recap their basic idea and give some examples. Some improved /
modified version of these algorithms would be introduced, too

The sampling target in this section is usually some posterior p(f|y), or more specifically usually an unnormal-

ized one p(f|y) o p(f|y). For simplicity, I would just use p( - ) and p( - ) for normalized and unnormalized
distribution, respectively.

13.3.2 Inverse Transform Method

If a closed form of (inversed) CDF could be obtained, then we could use the inverse transform method to
generate r.v. from the target distribution as

X;=F Y U)~F, U ~U(_,1) (13.68)
Algorithm [Inverse Transform Method

1. Generate U; ~ U(0,1),i=1,2,...,n;

2. Compute X; = F~Y(U;),i=1,2,...,n.

13.3.3 Acceptance-Rejection Sampling
Usually the distribution might be high-dim § € © / unnormalized p / intractable CDF F’, so we could not
use the inverse transform method

The idea of acceptance-rejection sampling is to find a proposal distribution g(#), which is easy to sample
from, and a constant ¢, such that we have

p) < ég(0)

(13.69)
5(0;
then we could generate 6; ~ g(6), and accept it with probability acceptance ratio «; = ;(( 0)) .
B(0;)
p(accept|0i)p(6i) c9(0:) ‘9(92')
i = = 13.70
p(6:)
=P _ ey (13.71)

Algorithm Acceptance-Rejection Sampling

1. Set the proposal distribution g(¢) and constant ¢
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2. Generate 6; ~ g(6),i=1,2,...,n;
p(0:)

cg(6:)”
4. Accept 6; with probability «;, 7 = 1,2, ..., n. This step is done by:

3. Compute o;; = 1=1,2,....n

(a) Generate U; ~ U (0,1),i=1,2,...,n;
(b) Accept6; ifU; < ay, i =1,2,...,n.

5. Use the accepted sequence {0; }.accepted as the r.v. sequence ~ p(6)

13.3.4 Importance Sampling Estimator and Importance Resampling

Motivation: Through posteriori sampling we finally still care about some statistics, say h(#). So directly
obtaining an estimator of, say Ey._ gy [h(6)] would also be acceptable.
The idea is borrowed from mean value method of numerical integration. Suppose we want to compute

Eg~pa)y) [1(0)], but we could only obtain an easily sampled g(¢), then we could write it as

Eopory) [1(0)] = / h(0)p(0]y) do (13.72)
p(9ly)
= [ h(0)—=%g(0)de 13.73
[ roEEa0) (1373
(0
or in the case of unnormalized distribution p(6|y):
Eo~p(oly) [h(0)] = / h(0)p(0y) do (13.75)
P at0)at
50 (1570
——=2g(0)do
I =5 9
~Eg(0) [H(0)0(0)] /Egrgio) [(6)] (13.77)
Estimator:
h=Y" h(0:)w(¥;) normalized
Do h(8:)w(6;) . (13.78)
h===—— , unnormalized
> i1 W(0:)
Effective sample size (Number of independent sample unit to get equivalent precision):
n? .
var(estimator with perfect importance) n S w(0:)? normalized
var(h) [w(0)7] Lujz unnormalized
> i1 W(0:)?

Algorithm Importance Sampling
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1. Set the proposal distribution g(6);

2. Generate 6; ~ g(6),i=1,2,...,n;

3. Compute importance w(6;) =

4. Compute h = Y1 h(8;)w(6;).

UJ Importance Resampling

Importance Sampling could also be used to obtain random sample by ‘resampling’ from the proposal distri-

bution with weight w( - ).

Algorithm Importance Resampling

1. Set the proposal distribution g(6);

2. Generate 6; ~ g(0),i=1,2,...

B

w(;)

0
3. Compute w(;) = o Z|y), i=1,2,...,N;
9(6:)
4. Resample a subset of size n < N: 6; with probability —————

i=1 WY

, as the r.v. sequence ~ p(Q|y).

13.3.5 MCMC

Theory of MCMC see section 12.1.2 ~page 310. Markov Chain Monte Carlo (MCMC) is useful in sampling

high-dim, unnormalized distribution, using the stationary distribution of DTMC.

(] Metropolis-Hastings Algorithm

M-H is the basic version of MCMC by inducing a acceptance ratio, together with the proposal distribution

9(0]0) to obtain the transition kernel

Dy

™

i —
propose  accept

which satisfies the detalied balance condition

and with some regular condition we have a stationary distribution

p* = p(0y)

— 9(010) a(10) = g(G,0) min {1, 2(0

13.80
1)9(010) (1350
(13.81)
(13.82)

Algorithm Metropolis-Hastings Sampling

1. Set the proposal distribution g(0]) and a starting value 6(°);

2. Fort=1,2,...,n:
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(a) Generate 0 from g(§|9(i_1));
(b) Compute the acceptance ratio ov(|00—1));
(c) Generate u ~ U(0,1);
(d) Ifu < a(A]0Y) (accept), set #) = 6, otherwise repeat the proposal-accept Pgii-1) g until accept;
3. Discard the first n samples as burn-in period (i.e. wait until the chain converges to the stationary distribu-
tion);

4. Keep the following samples, i.e. {#) as the r.v. sequence ~ p(f|y).

J”’

Note on ‘When to converge’:

* A test for a good MCMC setting is Gelman-Rubin potential scale reduction factor. With the same proposal

setting, we run M independent MCMC from various initial value to form {{¢’ . ~IM . Then run a
‘ANOVA’ test to confirm fast convergence
MST
PSR Factor = VF = | —— 13.83
SR Factor = v MSE ( )

which should be close to 1 if the chain converges well.

(] Hamiltonian MC / Hybrid MC

Hamiltonian MC views the sampling variable as ‘position’, and by introducing a ‘momentum’ variable, the
sampling process is viewed as a physical system, and the revolution of the system helps construct better state
transition between states.

Recap of Hamiltonian Dynamics. For a physical system with Hamiltonian H (g, p) in which ¢ for coordinate

and p for momentum, the dynamic is

dg _on

dt  Op

o b (13.84)
dt g

where holds H (g, p) = const.

HMC contains three steps: at current state (1), $(*~1)) (for coordinate and momentum, respectively)

1. Proposal: propose a new momentum ¢ from g(¢~5|¢>);

2. Revolution: Hamiltonian dynamics guided by H (6, ¢) = —logp(0) — log p(¢) (for some given time T/
steps) to obtain a new state (07~ ) — (07, dr)

3. MCMC: to accept / reject the new state

p(07)p(o7) g0V 07)g(V|br)

)p(gl- 1>>g<éT|e<i1>>g<a3T|¢<“>>} (1389
(60~ )p(@)g(¢~11) }

06 D)@ D) g (30 D)

L f p@e@t V)
- {1’p<¢<11>g<¢3ﬂ¢> >} (13:87)

a(Or, 7|0, oY) = min {1, @
D

(Hamiltonian invariant) = min { 1, ( (13.86)
p
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which gives stationary distribution p(0, ¢) = p(0)p(¢), keep the & component to obtain the target r.v.

sequence.

Note: the acceptance ratio « depends on momentum proposal g(¢) and the ‘Kinetic Energy’ log p(¢), so by

wisely choose these parameter we could construct a well-behaved MC.

Algorithm Hamiltonian MC

1. Construct the Hamiltonian H (6, ¢) = —logp(6) — logp(¢) (could both be unnormalized). Set the mo-
mentum proposal distribution g(¢|¢) and a starting value (), (0));

2. Fori = 1,2,,,,771;
(a) Generate qE from g(g?)]gb(i—l));

(b) Run Hamiltonian dynamics for 7' steps, usually by leapfrog process, to obtain (0~T, &T) Fort =
1,2,....T:

e dlogp(6)
Pty w
eee—efﬁﬁﬂ
e dlogp(0)

A R

(13.88)

(c) Compute the acceptance ratio

(13.89)

alfr, 160 ) = min {1, PO o) )

(6D g(dr|el—D)

(d) Generatew ~ U(0,1); Ifu < a(f7, dp|00, ¢li=D) (accept), set (1), (V) = (07, dr); otherwise

(reject), repeat the proposal-accept until accepted;

3. Discard the first n samples as burn-in period (i.e. wait until the chain converges to the stationary distribu-
tion);

4. Keep the § component in the following samples, i.e. {67 '_7» as the .v. sequence ~ p().

13.3.6 Gibbs Sampling

Gibbs sampling is a variant for high-dim case, by sampling from each dimensions based on the marginal

distribution (on other dims). Say the sampling target is § = 6= 61, . ..,6p], then Gibbs sampling is

Algorithm Gibbs Sampling

: 7(0) .
1. Set a starting value 0]-:17“.7}),

2. Fort=1,2,...,n:

(a) Generate 6\ from p(6105 0~ . ofi~Y)y;




Tuorui Peng CHAPTER 13. N et 4t Fi830 5 349

(b) Generate Héi) from p(92|9§i), Hgi_l), .. ’91(7@‘—1));
(c) ---
(d) Generate 01(f) from p(Hp\Hgi), . ,9(’21);
3. Discard the first n samples as burn-in period (i.e. wait until the chain converges to the stationary distribu-
tion);

4. Keep the following samples, i.e. {g(j)}?:ﬁ, as the r.v. sequence ~ p(6|y).

Comment:

+ Decomposition into conditional distribution is ensured by Hammersley Clifford Theorem .6

’gbp)ﬁp9j|0Aj(9j|91,~--,9j—1,¢j+1,---,¢p)

p(01a927' . '70 ) :p(¢1>
P j=1 pejw/\j (¢]|01) .. '79j—17¢j+17 o ')¢p)

(13.91)

which is the hint for a MCMC kernel K( -, -) = p. . of the Gibbs process, with the target distribution as

stationary distribution

K000 =TT, 00 0000 ) s

Stationary Distribution:

/ o (0D K (961, g gpgli-D) (13.93)

J

p

o0 ) ] poyj6, (657167610, 6470, G- do ™" gD (13.94)

>

01

f e

1
() -y T (@)1 () pli—1) : (i-1) :
/ /9])9(91 050 T poy o, (0571657, ., 052,, 00 05— 1)) doy ™ - - dgfi—)
2 R
(i

N T pe,i6,, (657161, ...,00 6071 .. 6=D) aby ™" . dg=D  (13.95)

>

P

(13.96)

. ) (ol ; i i
:/9 ce /0 p9(91 )2’ 0(1 1 Hp9j|9Aj (ej(l)wy)? e 9](1)1’ 0](:_11)’ ’0](31—1)) dgg DN de}(}l 1)
D 3

j=3
(13.97)
. (13.98)
o (6 (13.99)
S Proof: Use the following iteratively:
P01, 0, - .0,) =po (0101, ... 0p 1, 6p) Poylony Opl01; -, 6p-1) (13.90)

Poy1onp (¢p|61, .. '701)71)
O
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» The Gibbs sampling could also be considered a special case of M-H, with the proposal distribution, with

acceptance ratio o = 1.

* Metropolis-within-Gibbs: sometimes we cannot get all normalized marginal distribution py, g, .. We could
simply use Gibbs on the known conditional distribution, and use Metropolis-Hastings on the unknown

conditional distributions to solve this problem.

e.g. for a two-dim sampling with p(«|3), p(8|a), we could

Gibbs: a? ~ p(a|g0—1) (13.100)
M-H: 3% ~ MCMCB1) s g0 (13.101)

13.3.7 Mean Field Approximation and Variation Bayesian Inference

Section 13.4 Exactly Sovable Models

Note : In this section for a known/given parameter (i.e. we do not consider it an r.v., just a given param), we

attach an fixed to label it, e.g. N (u, o) for the case o2 is given, and we only study the distribution of .

13.4.1 Binomial Model

Generating process y1, . ..,y i.i.d. ~ Binom(n, p)
Distribution: f (y|p) = (Iy)py(l —p)" Y oxpY(1—p)Y (13.102)
Yi
Likelihood: L(y|p) o p=vi(1 — p)N" =2 ¥ = pNI(1 — p)N(=9) (13.103)
Ny Nnh-—1y
Score:S(y|p) = Y M (13.104)
p IL=p
Ny Nn—1y
Observed Info:.J (y|p) = — (1(”_]))%) (13.105)
Fisher Info:1(p) = N (13.106)
' p(1—p) '
+ Conjugate prior: Beta distribution B(«, /3)
p(pla. ) =5 (1~ p) ' ~ Bla ) (13.107)
) (a 5) )
p(ply. ., ) op™ (1 = p)"pN(1 = p)V V) ~ Bla+ Ny, B+ N(n - 7)) (13.108)

which suggests that prior distribution B(c, 3) looks like some ‘pre-drawn’ data.

* Jeffrey Prior: p(p) ~ B(=, =).
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13.4.2 Poisson Model
Generating process y1, . .., yy i.i.d. ~ P()\)
!
Distribution: f (y|\) = % A o AVe (13.109)
Likelihood: L (y|\) oc ANVe=NA (13.110)
Score:S(y|\) = N(% —1) (13.111)
N
Observed Info: J(y|\) = )\—;y (13.112)
. N
Fisher Info:I(\) = oY (13.113)
+ Conjugate Prior: Gamma Distribution I'(«, )
PN, B) = xa=1¢=B>  P(a, §) (13.114)
Y F(a) Y
p(Ay, o, B) oA e PANNT=NA L D(o 4+ N7, B+ N) (13.115)
1
* Jeffrey Prior: p(\) ~ F(i’ 0). (actually 8 — 0™, similar for followings)
13.4.3 Exponential Model
Generating process y1, . . ., yn i.i.d. ~ g(X)
Distribution: f (y|A\) = e Y oc \e W (13.116)
Likelihood: L(y|\) oc AN e VY (13.117)
N
Score:S(y|\) = U Ny (13.118)
N
Observed Info:J(y|\) = 2 (13.119)
N
Fisher Info:I(\) = 2 (13.120)
+ Conjugate Prior: Gamma Distribution I'(«, 3)
p(Ma, B) =2 xe=1e=B> . [(a, B) (13.121)
T T(a)
p(Aly, a, B) oA LT PN~ NIA U D (a0 + N, B + Ny) (13.122)

« Jeffrey Prior: p(\) ~ I'(0,0).

13.4.4 Normal Model

[0 Model with known variance o
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Generating process y1, . . ., yn i.i.d. ~ N(u, %)
1 — p)? 22
Distribution: f (y|u) Noro exp [— (y20,lf) ] o exp [—H QUQW} (13.123)
N(u? -2y
Likelihood: L (| 1) o exp [— (“2 y“)] (13.124)
2
, N(p—19)
Score:S(y|u) = — = (13.125)
N
Observed Info:J (y|p) = — (13.126)
o2
. N
Fisher Info:/(y) = — (13.127)
2
» Conjugate Prior: Normal Distribution N (p0, 73)
1 (1 — po)®
2 2
72) = _MRO O N (o, 13.128
Pl ) = exp | L (10.73) (13.128)
T
2 2 _or 2 2
2 p = 2p0p  N(p” —2gp) o’ /N 1
p(ply, o, 75) o< exp [ 22 - 52 ~ N T T (13.129)
o?/N 12 o?/N
« Jeffrey Prior: p(u) oc 1 ~ N (A, 00).
J Model with known mean
Generating process 41, . . . , yn i.i.d. ~ N (1, 02)
Distribution: f (y|o?) = ! exp _w—m* (13.130)
| Varo? 29" |
NMSE
Likelihood: L(y|o?) o o~ exp[ 257 Z ] =0 Nexp [— 52 ] (13.131)
N NMSE
Score:S(y|o?) = —— + 3 (13.132)
o
N 3NMSE
Observed Info:J (y|o?) = —— + ——— (13.133)
o o
2N
Fisher Info:1(0?) = — (13.134)
o
* Conjugate Prior: Inv-x?(1p, 03)
0}
2 2 Y A T L 2 2
p(? I, 08) == ——(0%) "2 "le 22 ~ Inv-x* (1, 0p) (13.135)
221(%)

2
v _ e NMSE
p(o?|y, vo, 08) o<(02)*70*1e 207 (6) "N/ exp [— 57 ] ~ Inv-y? <1/0 + N,
o

1
» Jeffrey Prior: p(0?) oc = ~ Inv-x2(1,0).
o

[0 Full model

1/008 + NMSE
vg+ N

(13.136)
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Generating process 41, . . ., yn ii.d. ~ N(u,0?)
o 1 y — p)?
Distribution: f (y|p, 0%) = Wexp [—( 205) } (13.137)
N _
1 NG —p)?+ (N —1)s?
Likelihood: L (y| s, 02) o< 0~V exp [_M (yi — u)zl =0 Nexp {— (=" + )s
=1
(13.138)
N
j(y — f)
Score: S (y|p, 0%) = N7 S (i — 1)? (13.139)
202 2(02)?
N Ny —p)
Observed Info:J (y|u, 02) = o? (o) (13.140)
WIS = Ny - p) N +Z(yz-—u)2 '
(02)? 2(c2)2 (02)3
N
Fisher Info:I(;1,02) = | ©° (13.141)
0 2(02>2
Another parameterization (p1, 02) — (i, logo):
Score:S(y |, log o) 20 (13.142)
core:S(y|u, logo) = Y :
Nt Dl )
o
N N(y—p)
Observed Info:J (y|u, log o) = o2 (0%)? (13.143)
L8 N@—p) 25— p)’ |
(02)2 o2
Moo
Fisher Info:1(p, logo) = [ o2 (13.144)
0 2N

» Conjugate Prior for (p1,0%) parameterization: Normal-Inv-x? Distribution N-Inv-x? (0,03 /k0; 10, 03),
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defined as p(0?) x p(plo?) = Inv-x2(vo, 03) x N (p0, 0 /o)

—( _ 1 |
(1, 0|10, 03 /Ko; o, 05) oc(0?) =02 (6%) T2 exp | — =5 (w00 + Ko(i — o)) | (13.145)

| 20
~N-Inv-x* (0, 03 / ko3 10, 03) (13.146)
_ _ [ 1 ]
P 72 [y, po, 03 /1503 0, 05) 0<(0®) T2 (%) T exp | — 5 (w00 + o(p — o)) | (13.147)
N — ) + (N — 1)s _
X (02) N2 exp |- NI = 1) +2( )s (13.148)
20
~N-Inv-x*(fin, 02 [ K U, O) (13.149)
_ ko n _
Him _Iio-l-N'uO Iio—f—Ny
Kn =Ko+ N
(13.150)
Up, =+ N
Vno?2  =wgos + (N —1)s% + roN (§ — po)?
\ " 0 Ko+ N
Koo y
o2 o?/N 1 o2
pluly,0®) ~N | — 1/ = i = <um > (13.151)
0 + Y + n
o? o?/N o2 o?/N
o (1 — )2\~ t1)/2
p(uly; 1o, 05/ ko3 vo, 0) o (1 + W;‘)) ~ ty, (Hn, 07/ Fin) (13.152)
Vno?2
* Jeffrey Prior
— for (p1, 0?) parameterization with independency assumption of (1, o):
p(p,0%) x1x (62t =02 (13.153)
— for (p1, 0?) parameterization without independency assumption of (p, o):
p(p,0?) < o3 (13.154)
— for (i, log o) parameterization with independency assumption of (u,0):
p(p,logo) x 1 x1=1 (13.155)

for (u, log o) parameterization without independency assumption of (u,0):

p(u,logo) oc o1 (13.156)
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13.4.5 Multinomial Model

(One sample item here) Generating process (y1, y2, - - - , ys) ~ Multino(1n; 01,60, ... ,07),, w.r.t. Z}]=1 0; =
J
LY iqyj=n

J J J
Distribution: f (y|6) = < . ) H G?j, Zej =1, Zyj =n (13.157)
.- Y1/ 55 ) )
J
Likelihood:L(y|0) o« [T 07, > 6, =1 (13.158)
j=1 ‘

the score function and Fisher information are slightly different because of the constraint > ;0; =1 1e g e
R/~ ¢ R’. Fortunately for multinomial the transformation function happens to reserve the det(1(#)), i.e. we

could simply ‘pretend’ their independence to get

J
. 1
Fisher Info: det[I(0)] = 00,0, ]Z;Gj =1 (13.159)
+ Conjugate Prior:Dirichlet Distribution Dirichlet(ay, ..., a.)
Il + ... +ay) d 1
fla) = 6°7"" ~ Dirichlet(ay, ..., a 13.160
p( | ) F(Oél)...F(OéJ) J];[l j ( 1 J) ( )
J
p(0ly, @) o H 05" T] 0% ~ Dirichlet(ar + y1, ..., ay +y) (13.161)
j=1
. J 1/ 1 1
« Jeffrey Prior: p(0) o< [T5_, 6, '~ ~ D1r1chle‘[(2 5)
13.4.6 Multi-Normal Model
Generating process y1, . .., yn ii.d. ~ Ng( £, 3)
dx1 dxd
stribution: _ 1 1 -1
Distribution: f (y|u, 3) NCSESE exp —i(y — )X (y—p) (13.162)
| N
Likelihood: L(y|u, %) oc|2|~V/% exp [2 > (i — 'Sy - u)] (13.163)
i=1
1
=|3|™N2 exp {—2# (2150)] (13.164)
N N
where So =Y (i — )i — 1) = NG — )@ — ) + Y (i —9wi—9)  (13.165)
i=1 =1
=N@G—-w)(y—w) +5 (13.166)

* Conjugate Prior: Normal-Inv-Wishart Distribution N-Inv-Wishart(uo, Ao/ko; o, Ao), defined as p(X) x
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p(p|X) = Inv-Wishart(vg, Ag) X N(po, X/ko)

Ko

( _ 1 _
Py S0, A2/ ko5 vo, Ag) oc()~0/2H) () 7P/2 exp —5757”(/\0E N - 5

(b — p0)E " (1 — po)

(13.167)
NN-IHV-WiShaI't(/,Lo, Ao/lio; IZR Ao) (13.168)
—(w _ 1 _ K _
P, 2y, o, Mo/ ko; vo, Ao) oc(2) =0/ (£) 7P/ 2 exp [—QtT(AoE - 30(/1 — o)X (p — Mo)]
(13.169)
1
x (2)"N/2 exp [—2757“ (IN@—p)(y—p)' + S]E_l)] (13.170)
~N-Inv-Wishart(iin, An/En; Un, Ap) (13.171)
( _ ko n _
= K,O—FNMO Ho—l—Ny
Kn =kKo+ N
(13.172)
v, =19+ N
N
2 _ A S ko = ~ /
On 0+ +/<;0+N(y 10) (Y — ko)
b
p(uly, ) ~N(pn, —) (13.173)
(119) ~to, a1 (s — ) (13.174)
Note: When generalizing from Inv-y? to Inv-Wishart, there’s a slight change voo2 — Aj.
« Jeffrey Prior: p(u, ¥) o | 2|~ (@1)/2 ~ N-Inv-Wishart(A, co; —1,0)
13.4.7 Hierarchical Binomial Model
Generating process: y; ~ Binom(;,6;),0; ~ B(a, ), j =1,2,...,J.
J 1 J
a—1 N\B—1 Yj NN\ Y
(6, Bly) o<p(04,ﬂ)jl_[l B’ -0 jHlejf(l 0;)" i (13.175)
J
p(0la, B,y) oc [T 05707 (1 = 0)% 4757 ~ Bla+y;, 8 + 1, — y5) (13.176)
j=1
J
Bla+y;, B+ —yj)
pla, Bly) xpla, B : (13.177)
(o0 vl ) [T =555

Note: p(«, 3) should be thin-tailed to avoid divergence at «, 5 — 0.

13.4.8 Hierarchical Normal Model

Generating process: y;; ~ N(0;,07),0; ~ N(u,7%),i=1,2,...,n;, j=1,2,...,J
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J J
(0, 1, 7ly) o, 7) [T NG5l ) T N (w5165, 7 /77) (13.178)
j=1 J=1
Yj H
0 T ”2;’"" e ! 13.179
p( ‘MaTay)Nl:Il 1 +ia 1 +i (13. )
= o?/n; T2 o%/n; T2
J 2
Pl ly) ool 7) [ N (@l — +7%) (13.180)
j=1 /
plulry) ~N (1 V), withp(ir) o 1 (13.181)
( —
>otha
= o?/n; + 72
=
i 1
= o?/n; + 12 (13.182)
~ 1
V=
>
= o?/n; + 12
N2 2\—1/2 (g, — i)
13.4.9 Linear Model
Here we directly use multivatiate version of linear model:
Y =XB+e, &~ N(0,0%) (13.184)
(13.185)
with assumption X ~ p(X|¢), Y|X ~ p(y| X, §) where independent priori assumption of ¢ and 0:
p(¥,0) = p(¥)p(0) (13.186)
in this way we can conveniently only consider distribution of § = (6, o2) in the posterior
p()p(0)p(Y | X, 0)p(X )
p(,0|X,Y) = (13.187)
O = VX p(X)
=p(¢| X)p(0|X,Y) (13.188)
Likelihood under normal assumption:
1
YIX,0) = —— Y -xp) (Y -X 13.189
p( | ’ ) (27‘(‘)"/20'” eXp 20_2 ( 6) ( B) ( )
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Solution of posterior with prior p(3, 02) o 02, i.e. Default Bayesian Regression’
prior: p(3,02) o2 (13.191)
posterior: 8o?, X, Y ~N((X'X)'X'Y,0*(X'X)™ ) (13.192)
o?|X,Y ~Inv-x2(n — p,52) (13.193)
BIX,Y ~t,p (X' X)X'Y,6%(X' X)) (13.194)
1
6% = Y - X(X'X)"'XY) (v - X(X'X)"'XY) (13.195)
n—p
V[X; XY ~typ (X/(X'X) XY, (I + X' (X'X) 71 X)52) (13.196)
Solution of posterior with conjugate prior N-Inv-x? (m, S%Co; 28 sg):
prior: Blo* ~N (mg,”Cy) (13.197)
o2 ~Inv-x% (v, s2) (13.198)
posterior: |o”, X,Y ~N (my, 0>C,) (13.199)
X, Y ~Inv-x2(vy, s2) (13.200)
My = Mo + CoX/(XCOX/ + I)fl<Y — X'my)
Cp=(X'X+CyH) ™ =Ch— CoX'(XCoX'+ 1)1 X0y
(13.201)

Up =1y+n

Uns2 = vps3 + (Y — Xmg) (XCoX' + 1)1 (Y — Xmy)

Solution of posterior with Ridge regression prior, i.e. take Cy = ¢l in the above conjugate prior

prior: B|o? NN(O, 00021)

p(o2) xo 2

(13.202)
(13.203)

Solution of posterior with Zellner’s g-prior, i.e. take Cy = (X’X)~! in the above conjugate prior

prior: B|o® ~N (b, go*(X'X) ™)

p(o?) xo=?
. g Iy —1 v/ g 2/ v/ yvy—1
terior: Blo?, X, Y ~N b X' X)Xy, X'X
posterior: Blo”, X, ( +10+ +1< ) ’g+10( )7)
o?X,Y ~Inv-x*(n, — [Y’(I - X' (X'X)"'X)Yy+
1
(b = (XX)TIXY) (XX (bo — (X'X) 7T XY)])
g

BIX,Y ~tn_

v g+1°  g+1 g+1

J i ; (bo — (X'X) XYY (X'X)(bo — (X'X) ' XY)] (X' X))

"Here the result uses the Woodbury Matrix Identity, introduced in section 4.1.2 ~page 118.

(A+UCV)'=At—A'U(Cct +vatu)y tvaT!

detail see https://en.wikipedia.org/wiki/Woodbury_matrix_identity?wprov=sftil

b+ —2(X'X)'XY, ——[Y’(I X(X' X)Xy +

(13.204)
(13.205)

(13.206)

(13.207)

(13.208)
(13.209)

(13.210)

(13.190)
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13.4.10 Hierarchical Linear Model
Here is the bayesian version of the Mix Effect regression model introduced in DOE, e.g.
Random Effect: Yi; = p+7; + i, €ij ~ N(0,02), 7 ~ N(0,02) (13.211)
Random Intercept: Y;; = 1+ Bo; + 4581 + €ij,  €ij ~ N(0,02),  Bo;i ~ N(0,0%)) (13.212)
R Intercept R Slope: Y;; = Boi + zijf1i + €ij,  €i5 ~ N(O, 0'?), B~ N(ug,X3) (13.213)
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Instructor: Zaiying Zhou

Design of Experiment (DoE) aims at understanding the cause-and-effect relation in systems (thus shares lots
of similar language as Causal Inference). DoE is one step beyond Linear Regression where X's are passively

drawn while in DoE we are deliberately designing them to be more precise / more efficient in studying Y-X

relation.
Regression / Causal Inference
Experiment Designing — Execution —  Analysis of Data (14.1)
DoE

(] Philosophy of DoE

 Randomize :
* Replicate :

* Blocking :

Section 14.1 Statistical Inference Methods for Factor Models

Basic inference methods are introduced in section 2.3.3 ~ page 54 (interval estimation) and section 2.4.2 ~ page 60
(hypothesis testing). ANOVA in Regression is introduced in section 3.3.4 ~page 84. Preliminary introductions
to factor model include section 3.1.2 ~page 74 and Chapter 8 ~ page 232. Listed here for review.

14.1.1 One Sample Inference

With X1, Xo, ..., X, iid. ~ N (g, 02):

* at null hypothesis Hy : it = pg,with known variance:

T = VX o) | N(0,1) (14.2)

g

* at null hypothesis Hy : it = pg, with unknown variance:

to = w ~ taoi (14.3)

« at null hypothesis Hy : ¢ = g, with unknown mean

n—1)s?
X6 = % ~ XAy (14.4)
)

360
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14.1.2 Two Sample Comparison

Two sample comparison with Normal assumption is just similar to one-sample mean comparison. Usually

the key problem is to find a ¢-statistics and get the dof for denominator.

Two sample: X11,X12, e 7X1n1 1.1.d. ~ N(Ml; 0’%); X21,X22, ooy X2n2 1id. ~ N(/,L27O'§).

« at null hypothesis Hy : p; — 2 = Ag, with known variance

20 = (X1 = Xo) — A0 N(0,1) (14.5)

2
7_’_7

ny n2

« atnull hypothesis Hy : u1 — po = Ap, with unknown but same variance

(Xl — XQ) — Ao (m — 1)8% + (722 — 1)8%
to = T T ~ lny4ny—2, Spooled = ny + ng — 2 (14.6)
Spooled +
ni n9

« at null hypothesis Hy : 1 — p2 = Ay, with unknown variance (Welch-Satterthwaite approximation for the

2
st s
— 4+ =
niy n9

Behrens-Fisher problem!).

X1 —-Xo)—-A
el _ (K —X)—Ao - (14.7)
2 2 (52/n1)2 (52/n2)2
i 372 1 2
ni | ng ni+1 no + 1
* at null hypothesis Hy : 01 = 02, with unknown mean
st
Fo=—5~Fn-1n,-2 (14.8)
52
> R. Code
1|yl <= rnorm(100)
2 |y2 <= rnorm (100, 1)
3
4+ |t.test(yl, y2, var.equal = TRUE) # Use pooled variance
s |[t.test(yl, y2, var.equal = FALSE) # UWelch's t-test
6 |t.test(yl, y2, paired = TRUE) # pairwise t
14.1.3 One Way ANOVA
Generalization from two-sample ¢-test to Factor ANOVA: Use the trick that ' ~ ¢2, e.g.
Xl — Xg — A() 2
tg = ( 1) I ) ~ Fi ny4ny—2 (14.9)
Sgooled(i + 7)
ni no

"This is the output in t.test(x1,x2, paired = FALSE, var.equal = FALSE)
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in which the nominator is ‘difference in mean’, denominator is ‘fluctuation’, i.e. in ANOVA language,

variation caused by group difference MSR and variation caused by random effect MSE.

Model: (Factor model with balanced design here. Cell mean model & unbalanced design see section 8.1.1 ~page 232)

¢ Fixed Effect:

w.rt. Y o =0 (14.10)

Yij=p+a; +ei €¢jNN(O,02), 1=1,2,...,a, j=12,...,n,
i=1
Solution could be obtained by traditional way [u, a1, ..., aq 1] = (X’X)"1XY with notation equa-
tion 3.10 ~ page 74.
B 1 a n
[L:Y..:%ZZYU (14.11)
=1 j=1
1 n
Gi = ZY” — i (14.12)
J=1
2 1 ¢ =\ 2
]:
-1 a g2
2 _(” ) 2 i1 Si (14.14)
nr—a
ANOVA Table:
Source of Var  SS dof MS E (MS)
_ _ SS
a; SSa =37 (Vi — Y..)Q a—1 70‘1 ”Zz 1104
a —_—
SSE
2
o? SSE = Z?:l Z;L:I (Y:U - Y;) nr—a n(a — 1) o?
F statistics for Hy : 1 = ... = o, = 0:
MS«a
FO Misli Fa 1 nr—a (1415)
* Random Effect:
E]:M—i_az—i_EU EijNN(Oaa) Z:1727 y A, ]:1727 s Mg, aiNN(O7UCZy)
Estimation:
1 a n
=Y. =— 14.16
1 _
2 2
= Z(Y’J —Y;) (14.17)
7=1
-1 2
82_(77’ )Zz 15 (1418)
nr—a
1/SS SSE
52 :( S ) (14.19)
a\a—1 npr—a
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ANOVA table:
Source of Var  SS dof MS E (MS)
o2 SSa=n>?, (Vi — }7..)2 a—1 % o? +no?
o SSE=YL Y (N mrea e o

F statistics for Hy : 02 = 0:

MSa

F - MisEl ~ Faf]”ana (1420)

> R. Code

1 |library (agricolae)

» |dat <- data.frame(y = ..., trt %>%h factor())

4 |# fixed effect

s |[fit_fixed <- aov(y ~ trt, data dat)

6 |summary (fit_fixed)

8 |# random effect
o |[library (1lme4)
0o [fit_random <- 1lmer(y ~ (1ltrt), data = dat)

i | summary (fit_random)

0 General Linear Test Point of View

General Linear Test in linear regression see section 3.4.6 ~page 96. The idea is to compare a full model and

a reduced model

Full Model : Y;j =p+ao;t+ey
(14.21)
Reduced Model : Y = pu+ €5
in this case the General Linear Test F' is
SSER - SSEF)/(dOfR - dOfF) MSa
FGLT:( = =Fy~Fy g 14.22
SSEr/dofr MSE 07 Tetnroa (14.22)
O Likelihood Ratio Test Point of View
Detail theory of LRT see section 2.4.3 ~ page 60. the test statistics is
sup L(Y; u,«
_u;a:po Ysu )_ SSTotal \ "7/? Loz A S 12 (14.23)
T swpL(Yipma)  \ SSE ’ 887 Xa-1 '
wa

and we have a bijection between A and Fj.

[l Homoscedasticity Assumption Diagnostics
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e Bartlett’s Testfor Hy : 01 = ... = 0,

@ (n—1)MS;
(7 — a) log 2= (" = MS: % (n—1)logMS;

T = nr—a ~e X2 (14.24)
S ST N
3(a—1) =lpn—-1 nr-—a
the idea is GeomMean = ArithMean when all are equal.
» Levene’s Test
T = (ANOVA of yij — 4i.|) *~ Fa-1n7—a (14.25)

« Welch’s ANOVA

A generalized version of Welch’s Test in two-sample ¢-test.

> R. Code

| |bartlett.test(y ~ trt, data = dat) # Bartlett's Test
> |leveneTest (fit) # Levene's Test

; |oneway.test(y ~ trt, data = dat, var.equal=FALSE) # Welch's ANOVA

0 Multiple Comparison

Target: When compare level pairs, say some (o, o) pairs C {a,}%;, i.e. there are multiple tests, we need

to adjust the testing procedure to avoid multiple comparison hazard.”

* Fisher’s Least Significant Difference (LSD) without correction

Y; - Y
tij = S ~tN_qa (14.27)

\/MSE (1 + 1)
n; n;

rejection region construction use t y_q 1—a /2

* Fisher’s Least Significant Difference (LSD) with Bonferroni correction: rejection region use x4 1—a/2m

* Tukey’s Honestly Significant Difference (HSD): Under Hy : op = ... = ay, treat Y,; as sample of ,. We
could study the range of {Y,.}%_,
max{V,. }i) — min{Y¥, },
q= ~ Ganr—a
sv/n

where ¢. . is Tukey’s studentized range distribution, see equation 3.227 ~page 109.

(14.28)

* Scheffé’s Method by testing contrasts. A ¢ = > ¢ ; &y wrt. > ¢ & = 0is called a contrast’.

) 2 _
iYi)?

2 An intuition: If we simply test each of m tests at o;; = 0.05, then the overall type-I error is

a=1-]]0-a)>005 (14.26)

=1

3First introduced in section 3.6.1 ~page 107.
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* Benjamini-Hochberg Method for False Discovery Rate control.

* Dunnett’s Test for Many-to-One problem: e.g. we have a control group «g and a — 1 treatment groups

at,...,Qq—1, we want to test a one-sided null hypothesis

Hy:po<py, Vi=12...;a—1

Dunnett’s statistics are

ty

Yi. — Yo . nin; a—1
ti = : : ~t1(p={p~=\/ Li=1)
l MSE(L + i) ’ Z] (ni 4+ no)(nj +no) "’

n; no la—1

> R. Code

1 |fit <- aov(y ~ trt, data = dat)

4 |# Fisher LSD

s |[LSD.test (fit, 'trt', group = FALSE, console = TRUE)

6 |# Fisher LSD with bonferroni

7 |pairwise.t.test(dat$y, dat$trt, p.adj = 'bonferroni')

s |[LSD.test (fit, 'trt', group = F, console = T, p.adj = 'bonferroni')
9 |# Tukey's HSD

10 | TukeyHSD (fit)

n |glht (fit, linfct = mcp(trt "Tukey")) %>% summary
12 |# Scheffe's Method

15 |scheffe.test(fit, 'trt', group = F, console = T)

14 |# Dunnett's Test

15 |glht (fit, linfct = mcp(trt = "Dunnett")) %>% summary

17 |## plotting confidence interval

s [glht (fit, linfct = mcp(trt = "Tukey")) %>% confint %> plot

Interval Construction follows similar method, see section 3.6 ~page 107.

14.1.4 Multi Factor ANOVA

ANOVA inference for multifactor case was introduced in section 8.1.4 ~page 235. Here are some recap.

And more complex models and some insights for DoE are included.

Take two factor model with interaction as exmaple:

Yijk = p+ a; + B + (aB)ij + &ijk

(14.30)
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Decomposition of SS and dof:

Yijp — Y. = (Y. = Y.) + (V. - Y.) (14.31)
+ (Yij = Yi. = Y + Vo) + (Yijr — Vij.) (14.32)
ai + B+ (af)ij + eijr = (1 + i) — ) + (1 + B;) — ) (14.33)
+ (4 i+ B + (@B)iy) — (1 + i) = (1 + By) + i) + (eijk) (14.34)
s 3 Y (Yije — Y..) =bn Z (V. —V.)" + anzb: (V. —v.)? (14.35)

i=1 j=1 k=1 i=1 j=1
+ nza: Eb: (Vij — Vi = V5 + V)% + y zb: 3 (Yije — Yij.)® (14.36)

i=1 j=1 1=1 j=1 k=1

nab—1=(a— 1)+ (b—1) (14.37)
+((@a=1)(b—1)) + (n—1)ab (14.38)

and ANOVA table (e.g. with «, 8 both fixed effect factor):

ANOVA table:
Source of Var SS dof E (MS)
o > \2 bn > ¢ a?
i b Y. - Y. 1 2, M2 =107
« n Zzl ( ) a o2 + o
b Y. v.)? b—1 2 I Z?ZI '832
5] anjzzl ( g ) — o _l’_ ﬁ
a b a n 2
_ _ _ _ ny . e a/B i
(@B Yy > (Vi —Yi—Yi+Y.) (a-1)b-1) o+ izt 2y=1 (0P
i=1 j=1 (a=1)(b-1)
a b n
o Z (Yije — 571']‘-)2 ab(n — 1) o2
i=1 j=1 k=1

% 14.1: ANOVA for two fixed effect model

Calculation of complicated factor design, especially for fixed&random combined or more factors, see Mont-

gomery’s Method at section 8.1.4 ~page 235.
Some Key Problems to Consider in DoE:

« Effect of factors?
* Include interaction term, say (a3);;, or not? Better functional form for interation?
» Cost of experiment in the case of multi factor.

O F Test For Factor or Interaction term:

F test is simply MS:/MS, where E [MS:] — E [MS}] should correctly reflect the quantity to study. e.g. Still

use the above table 14.1 ~page 366 example, to study whether to include interaction term (a3);;:

MS(aB)  n Yy 3y (Vi — Vi =V 4+ V) J(a—1)(b—1)
F = ~ Fla1)o—1).ab(n_1) (14.39)
(@8) = TMSE S 12J S (Yigs — z‘j.)Q/CLb(n—l) (a—1)(b—1),ab(n—1)
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Example Code for two factor model

> R. Code

1y <= c(...)
2 [factorl <- c(...) %>% factor()
3 |factor2 <- c(...) %>% factor ()

4+ |dat <- data.frame(y, factorl, factor2)

s laovfitl <- aov(y ~ factorl + factor2, data dat) # without

interaction

¢ laovfit2 <- aov(y ~ factorl * factor2, data dat) # with interaction

s laovfitl %>% summary ()

o laovfit2 %>% summary ()

(] Graphic Method for Interation
e.g. for each « level, plot y-£3; relation and observe the parallel relation.

> R. Code

| |interaction.plot(x.fac = factor2, trace.fac = factorl, response = y)

[0 Tukey’s One dof Test for Additive Interaction

Use the general interaction (af3);; uses (a — 1)(b — 1) degree of freedom, thus cause less dof in estimating
o2, and sometimes prevents us from conduct a valid DoE due to cost limit (e.g. can only conduct one test for each
level n = 1).

Tukey’s method is to use an analogue to linear model (a3);; = Ao 3;:

Yijk = p+ i + B + AaiBj + €ij (14.40)

* Estimation:
&; =Y. — Y. (14.41)
B =Y, — Y. (14.42)

S Y i3V
(i a2) (X5 5)

(14.43)

* Motivation and Justification of product form interaction Ac;(3;: Consider (aﬂ)ij as a function of «;, 3;,
expand to second order:
(a3)i; as function of o, B =Co + Cra; + C2Bj + C110F + Craci B + Caa87 +0(2)  (14.44)

normalization condition > ;" («f)i; = 0, 2221(@5)@‘ = 0 yields

(Ozﬁ)ij = Cmalﬂj + O(2nd) (14.45)
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* Tukey additive term test:

oSSV (S S0 () (S0 67 550 57)
MSE MSE

~ Fl,abn—a—b (1446)

> R. Code

i |library(additivityTests)

2 |datmat <- matrix(dat, ...) *

3 [tukey.test (datmat)

Section 14.2 Blocking Methods

Blocking methods deal with nuisance factors, i.e. factors that we are not interested in but may affect the

result, to help reduce the variation of the result.

A concrete example: we want to study the effect of fertilizer («) on crop yield (y), but the soil quality (3)
may affect the result. But finally we care about the effect of fertilizer on some arbitrary soil quality, so we block

the soil quality factor, which is the nuisance factor in this case.

14.2.1 The Randomized Complete Block Design

e.g. when assessing the effect of «;, we might try to induce some other blocking factor 3;. Then the model

turns to a 1 fixed (a) + 1 random (3) factor model, with replicate size n = 1
Yij = p+ o; + B + €45 (14.47)

which is the case for the randomized complete block design (RCBD).

Intuition about F,:

MSa

Fo= oo 14.4
SSE/dOfSSE ( 8)

adding a blocking factor § results in both smaller SSE and do fssg. We are expecting more reduction in SSE so

finally MSE decreases, to yield higher power.
Testing on f3 is usually not quite necessary (only when considering whether to include /3 in the model).*

> R. Code

4Such comparison is achieved by assessing relative efficiency.

¢ MSEcw
MSErcBDp
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> |dat <- data.frame(y = ..., alpha = ... %>} factor, beta = ... %>%
factor)

3 laov(y ~ alpha + Error(beta / alpha), data = dat) %>% summary

J Generalized RCBD

for model with replicates n > 2 we fit the model

Yijk =p+a; +Bj+eijk, k=1,....n

or, in this case error terms are acceptable

Yijk = p+a; + B + (aB)ij +eiji, k=1,....n

14.2.2 Latin Square Design for Multi Factor ANOVA

To handle the case of more blocking factors (or simply there are too many factors), but faced with budget limit
and can only conduct one test for each level. Latin Square Design is a method to reduce the cost of experiment
while still keep the validity of DoE.

Latin square is used for # level equal for all factors (say 3 factors with 4 levels each).

(1 3 Factors Latin Square Design

e.g. model®

Yijk = 1+ o + Bj + vk + €ijk (14.49)

denote «; as row effect, §; as column effect, v € {A, B,C, D, ...} as layer effect (elements apprear in equa-
tion 14.56 ~page 370 matrix). # levels for factors := m. Replicates size = 1 so is ignored. For blocking

experiment, we usually put the blocking factors at row & column, and the factor of interest at layer .

>We are already using Latin square to solve the problem of limited sample size, so adding interaction terms like (3);; is unwise

because it uses dof, thus cause less dof in estimating o2 or even make it impossible.
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We could assign m x m runs according to the following Latin square (take m = 4 as example):®

factory N\, S1 B2 B3 Pa

o (A B C D
arl B C D A
(14.56)
as| C D A B
oy \D A B C
with ANOVA table:
Source of Var  SS dof
a; (row) m Z (YZ — }7)2 m—1
i=1
Bj (column)  m» (V. — v.)° m—1
j=1
v (layer) m Z (Y.k — }7)2 m—1
k=
= S S\ 2
o? S Lyjwerain Yige = Yie = Y = Yo +2Y.)° (m—1)(m — 2)
i=1 j=1 k=1

X 14.2: ANOVA for 3 Effects Latin Square Design

* An illustration for sample size reduction: for 3 factor experiment with 4 levels for each factor, we need

4% = 64 runs. If we use Latin Square Design, we only need 4 x 4 = 16 runs.

> R. Code

1 |# obtain latin square design
2 |library (agricolae)

3 |trt <- LETTERS[1:4]

4 |design3 <- design.lsd(trt, seed = 42)

(] Replicated Latin Square Design

m™" order Latin square could be used with  replicates to generate Im? runs. There are 3 variants, corre-

sponding to different experiment settings.

8i.e. m x m runs (arranged by column):

runl :al,ﬂl,A (1450)
run2 :az, 1, B (14.51)

(14.52)
rund 1041,/32,3 (14.53)
run6 a2, 52, c (14.54)

(14.55)
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Here we take » = 3, m = 4 as example. Replicates size = 1. And x;, [ = 1,2,...,r is used to denote the

Latin square replicate effect.
e Same column + Same row effect
Y;jkl:M+ai+ﬁj+7]€+/€l+€ijkla i7j7k:1a2a"'7m7 l:1,2,...,7’.

(Note that here different Latin squares are replicates)

factory ™\, B1 B2 B3 B Bi B2 Bs Pa Bi B2 Bs Pa
ar A B C D a1 (D A B C ar{C D A B
as| B C D A asl A B C D aa| D A B C
az3| C D A B az| B C D A as| A B C D
a\D A B C au\C D A B au\B C D A
with ANOVA table: " "2 s

Source of Var dof

a; (row) m—1

B; (column) m—1

7, (layer) m—1

K (square replicate) r — 1

o? (m—1)(r(m+1) —3)

» Same column + Different row effect (Or equivalently Different column + Same row effect)

Y;ijl:M+ai(l)+5j+7k+'%l+5ijklv i(l)zlw'wmxr Jk=1,....m, I=1,...,m

factory N\, B1 B2 B3 Pa B1 B2 B3 Pa B B2 B3 Pa
ap (A B C D as (D A B C ag(C D A B
al B C D A as|l A B C D aw| D A B C
as| C D A B arl B C D A an|A B C D
au\D A B C as\C D A B app\B C D A
with ANOVA table: i "2 s

Source of Var dof

;(ry (row) r(m—1)
B; (column) m—1
v, (layer) m—1

k; (square replicate) » — 1

o? (m—1)(rp—2)
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* Different column + Different row effect

Yijer = po+ iy + By + vk + ke + g, 10,50 =1,...omxr k=1,....m, l=1,...,m

factory N\, 1 B2 B3 [ Bs Bs Br Bs By Bio Pin Pz
(e73] A B C D Qs D A B C [875) C D A B
a9 B C D A (6753 A B C D 10 D A B C
a3 C D A B (074 B C D A 11 A B C D
ay\D A B C ags\C D A B ap\B C D A
K1 K2 K3
with ANOVA table:
Source of Var dof
;(py (row) r(m—1)
Bj(y (column) r(m—1)
v; (layer) m—1
K (square replicate) 7 — 1
o? (m—=1)(r(p—1)—-1)
[J 4 Factors Graeco-Latin Square Design
e.g. model
Yij = p+ i + B + vk + &1 + €ijrir (14.57)

denote oy as row effect, 3; as column effect, v € {4, B,C, D, ...} as layer row effect, ¢; € {c, 3,7,9,...} as

layer column effect. # levels for factors := m. Usually [ = 1

We could assign m x m runs according to the following Graeco-Latin square, in which each Graeco-Latin
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alphabet pair only appear once (take m = 4 as example):’
factory, o\, B1 B2 B3 Ba
ay {Aa BB C~ Dé
as| By AS Da C
21 =Y b (14.67)
as| C§ Dy AB Ba
ags \DpB Ca Bd Ay
with ANOVA table:
Source of Var  SS dof
a; (row) mZ(}_ﬁ -Y )2 m—1
i=1
Bj (column) m Z (173 -Y. )2 m—1
j=1
v (layer row) mZ(Yk -Y. )2 m— 1
k‘;’l
¢; (layer column) m Z (}7 =Y )2 m—1
=1
o2 SIS TS Teskne (Yij = Yoo = Voo = Yo = Yoy 4 3Y.)° (m — 1)(m — 3)

GraecoLatin

<.
Il
—
<
Il
—
=~
Il
N
—
Il
N

% 14.3: ANOVA for 4 Effects Graeco-Latin Square Design

UJ Balanced Incomplete Block Design

A further case is that in two factor model

Yij ~ p+ 7+ B +eij,

i=1,2,...,t

i=1,2,...

we might have restrictions on the number of runs for each blocking level 3;, say we could only have k < ¢ runs.

i.e. for ideal case we should have ¢ x b runs but now only k£ x b. This is called the balanced incomplete block

design (BIBD).

’i.e. m x m runs (arranged by column):

runl

run2

runb

run6

run9

runl0

2041,51,14,&

:0427517B7’Y

20117/827 Bv/B
:a27ﬁ27A76

2041753, C7’Y
iaz, B3, D, o

(14.58)
(14.59)

(14.60)
(14.61)
(14.62)

(14.63)
(14.64)
(14.65)

(14.66)
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To handle this case, we hope to: for each [ level, wisely choose which of 7;s should be included in the

experiment runs. Here’s an example:

assignrun? N\, (1 B2 B3 P assignT N, Bi B B3 B
1 P2 B3 fa

=AY v A B C D
n=b VvV C A D B
mi=ClVoVY D C B A
n=b\y VY

Comment:

* Such design is possible iff

 bk(k—1)

A= W= 1) is an integer

* The design can be generated from Latin square, e.g. BIBD assignment in equation 14.68 ~page 375 is just

3 rows from 4 x 4 Latin square.

> R. Code

BIBD assignment generation

1 |trt <- LETTERS[1:4]
2 |k <= 3

; |design.bib(trt, k, seed = 42)

14.2.3 Regression with Blocking

Regression could be combined in factor model. An example is a factor component « + a numeric component
x' 3, say

a

Y = Z (Boi + 23 51i) + €4

=1

Section 14.3 Factorial Design

An important application scenario of DoE is factorial design (#T[AiZ), which is a method of designing
experiments to study the effects of multiple factors simultaneously. The goal of factorial design is to efficiently

explore the existance of effects and interactions.

14.3.1 2% Factorial Design

A typical setting is that we have k factors, each with 2 levels (because we just want to examine the existance

of effects) denoted {+, —}. This case is called 2* screening designs. An example of 23 factorial design:
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Run Factor A Factor B Factor C' Response y

1

co N O Ot = W

+

+ o+ o+

n=Yy——
Y2 = Y+——
Y3 = Y—+-
Y4 =Y——+
Ys = Yt++-
Y6 = Y+—+
Y1 =Y—++
Y8 = Y+++

The estimation of effects can be done by Least Square Estimation by (X’X)~!1X'Y, and further note that

the above +1 encoding yields

e.g. a model with all interaction term for the above 22 design:

YA,B,C = ilf)/ +A+ B+ C+ (AB) + (AC) + (BC) + (ABC) + eap.c,

intercept

effect = 2 x corresp regression coef

(14.68)

A, B,C € {+1,-1}

(14.69)
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should be estimated by
effect =2 - 3 (14.70)
B=(X'X)"'X'Y =2FX'Y (14.71)
o2
var (effect;) =2 % replicate (14.72)
run (1) A C (AB) (AC) (BC) (ABC)
Ly [+ - — — +  + 4 — ]
2:y— |+ + - - - + +
3iy—4— |+ — — — + — +
D e S A (14.73)
S:1yYsp_ |+ + — + — — -
6:yr—4 | + + + - + — -
Tiy—+ |+ — + - - + -
8:iyrir |+ + + o+ 4+ + +
_yl_ y———-
Y2 Y+—
Y3 Y—t-
y=|" =V (14.74)
Ys Y44-—
Yo Y+—+
Y7 Y—t++
| Y8 | | Y4+
Comments:

 +1 encoding could ensure the orthogonality of the design matrix X, i.e. X'X = I, which benefits the

estimation and avoid collinearity.

* We can choose which effect terms to be included in X, simply by multiplying corresponding components

columns, e.g. ABC interaction in X is

run (ABC)

Y___
Y4—
Yt
Y+
Yt+—
Y+—+
Y—++

Y+++

- -

_l’_

A

+

_l’_

_l’_

+ + + +

i.e. only A, B, C are ‘assigned’, other interactions are induced by multiplication.

(14.75)
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Section 14.4 Miscaellaneous Topics

14.4.1 Missing Values

Here we introduce a Minimizing-SSE method by

Ymissing = argmin SSE (14.76)
with y fill in

e.g. two-factor model with y;; missing, with current statistics denoted with prime ’, i.e. obtained without

missing values:

/ / /
ftin _ @i T by, —y..

Yij = m (14.77)

14.4.2 D-Optimal Design

Motivation: What is a good design matrix X? An answer is to minimize the generalized variance of 3. Use

equation 3.56 ~ page 82 we have
Uar(B) =o}(XTX)™! = argmax | X'X]| (14.78)

Example: Use D-Optimal to explain balanced design in one-way factor ANOVA, use cell mean model:

a
Yij=ri+tey, 1=12,...,r j=12,...,n; an:nT (14.79)
i=1
with design matrix
1,, O 0
0 1 .. 0
nrr = | (14.80)
0 0 1,,
D-Optimal:
0 no ... 0 r nr\T
XX[=1]. L zﬂlmg (7) (14.81)
0 0 ... n,
. nr . .
equality taken at ny = no = ... = n, = —, i.e. balance design.
r

Note: In the case that we have some constraint on X, solving the D-Optimal problem could be complicated.
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Sometimes I asked myself: is it necessary, or even make sense, to put such a personal note online? After all
the contents in this note contain tons of ‘naive’ statements so it’s actually far from being well-organized or worth
used for reference. But later when I took part in the edition work of THU 2023 Feiyue Project, I realized that

things don’t have to be perfect to be shared. Or, to quote one of my friends:
A AFREEE T AN EIRB R S £ HLd AR AR LT .

So I decided to put this note online, hoping that it could be of some help to anyone like me, once confusing and
struggling. You don’t even have to read it, just knowing that someone else has been through the same thing as
you do might be enough. And for the same reason, I’ve been try to set up some online project, or connect with
statistics minor students like me, hoping to help them in some way. | hope that this note could be a small step
towards this goal. And I hope that I could keep this spirit in the future.

If any of the contents in this note is helpful to you, please feel free to share it with others. And if you have

any questions, suggestions, or just want to chat, please contact me via email: vincentl9@outlook.com.

BJa, PUBHEBIXEAAL, RKATREHRS .

Tuorui ‘vincentl9’ Peng
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Abel’s Lemma for Summation by Parts, 215
Absorbing State, 304

Acceptance Ratio, 178
Acceptance-Rejection Sampling, 175, 332
Accuracy, 235

ACF (Autocorrelation), 257, 297
Action-Value Function, 311

Activate Function, 252

ACVF (Autocovariance), 257, 297
Adaboost, 252

Adaptive LASSO, 234

Additive Interaction, 355

Adjacency, 287

Adjusted R2, 85

Adjusted Skewness, 75

Adjustment Formula, 294

AFT Model (Accelerated Failure Tome Model), 218
Agglomerative Clustering Algorithm, 126
AIC (Akaike Information Criterion), 89
Almost Sure Convegence, 17

Alternative Hypothesis, 45

Ancillary Statistic, 31

Anderson-Darling Test, 78

ANOVA (Analysis of Variance), 68, 71, 96, 220, 349
AO (Additive Outlier), 269

APER (Apparent Error Rate), 126
Aperiodic, 299

AR Model (Auto-Regression Model), 262
ARIMA Model, 266

ARMA Model, 266

Assignment Mechanism, 274

Asymptotic Unbiasedness, 32

AUC (Area Under ROC Curve), 236
Auxiliary Vector, 142
AV Plot (Added Variable Plot), 74

Backdoor Criterion, 294

Backshift Operator, 261

Backtracking, 163

Bagging Method (Bootstrap Aggregation Method), 251

Balanced Design, 365

Bartlett’s Test, 77, 352

Basu Theorem, 31

Bayes Optimal Classifier, 237

Bayes’s Rule, 9, 327

Bayesian Network, 287

Behrens-Fisher Problem, 43, 349

Best Linear Estimator, 258, 321

Beta Integral, 325

BF Test (Brown-Forsythe’s Test), 77

BFGS Updating Method (Broyden-Fletcher-Goldfarb-
Shanno Updating), 166

Bias, 31

Bias-Variance Trade-Off, 32

BIBD (Balanced Incomplete Block Design), 361

BIC (Bayesian Information Criterion), 89

Birth-Death Process, 308

Bisection Search, 150

BLUE (Best Linear Unbiased Estimator), 66

Bonferroni Correction, 116

Bonferroni Inequality, 19

Boole Inequality, 8

Boosting Method, 252

Bootstrap, 180
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Bootstrap Aggregation, 251
Borel-Cantelli Lemma, 8

Box Plot, 74

Box-Cox Transformation, 90
Box-Jenkins Approach, 268

BP (Back Propagation), 253

BP Test (Breusch-Pagan Test), 77
Bracketing Linear Interpolation, 150
Branch Growing Process, 249
Branching Process, 305
Brent-Dekker Method, 153
Breslow’s Approximation, 216
Brownian Motion, 306

Broyden Class, 167

Canonical Link, 100

Canonical Variable Pair, 122

Canonical Variate Pair, 122

Cantelli Inequality, 20

Cauchy-Schwarz Inequality, 19, 110
Causal Effect, 274

Causal Solution, 319

CBN (Causal Bayesian Network), 291
CCA (Canonical Correction Analysis), 122
CDF (Cumulative Distribution Function), 10
Cell Means Model, 96, 220

Censored Data, 202

Chain, 288

Chapman-Kolmogorov Equation, 301
Characteristic Function, 16

Chebyshev Inequality, 19

x? Distribution, 22

Cholesky Decomposition, 140

CI (Confidence Interval), 41

Circulant Matrix, 144

Classic Model, 7

Classical Gram-Schmidt Orthogonalization, 141
Classification Metrics, 235

Clinical Trial Design, 230

CLT (Central Limit Theorem), 18
Clustering, 246
Clustering Analysis, 126

CMD R? (Coefficient of Multiple Determination), 85

CMH Test (Cochran-Mantel-Haenszel Test), 211
Cochran’s Theorem, 64
Coefficient of Partial Correlation 7, 86
Coefficient of Variation, 26
Complemetary Formula, 324
Complete Statistic, 30
Condition Number, 134
Conditional Expectation, 14
Conditional Independence, 321
Conditional Probability, 9
Confeidence Region, 41
Confidence Band, 67
Confidence Coefficient, 41
Confidence Region, 116
Confidence Band, 67
Confidence Interval, 41
Confidence Limit, 41
Individual Converage Interval, 116
Confusion Matrix, 235
Conjugate Gradient Method, 168
Conjugate Prior, 327
Consistency, 32
Contingency Table, 55, 227
Continuous Mapping Theorem, 17
Contrast, 96, 352
Convergence, 17
Convergence and Ergodic Theorem, 177
Convergence Order, 135
Convolution, 11, 322
Cook’s Distance, 82
coordinate descent method, 157
Correlation Coefficient, 14
Adjusted R?, 85
Coefficient of Multiple Determination R2, 85
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Coefficient of Partial Correlation 7, 86
Correlation Coefficient Matrix, 105
Pearson’s Correlation Coefficient, 85
Pearson’s Correlation Coefficient r, 26, 105

(Cross) Correlation Matrix, 103

(Pearson’s) Correlation Matrix, 103

Countable Additivity, 7

Covariance, 14

Covariance Matrix, 15, 104

Covariate, 274

Cox’s Modification, 216

Cox’s Proportion Hazard Model, 214

Cox-Snell Residuals, 217

CR Inequality (Cramer-Rao Inequality), 35

Cramér-von Mises Test, 78

CRAN (The Comprehensive R Archive Network), 183

CRE (Completely Randomized Experiment), 276

Cross Correlation Structure, 318

Crossed Factor, 227

CTMC (Continuous Time Markov Chain), 301

Cumulative Hazard Function, 203

Curse of Dimensionality, 117

CV (k-Fold Cross Validation), 87

CV (Cross-Validation), 236

D-Optimal, 365

d-Separation, 289

DAG (Directed Acyclic Graph), 287

data.frame, 186

DBSCAN (Density-Based Spatial Clustering of Appli-
cation with Noise), 129

de Moivre-Laplace Theorem, 18

Default Bayesian Regression, 346

Degree of Freedom, 64

Dekker’s Method, 153

Deleted Residual, 80

Delta-Beta Residual, 217

Denominator-layout, 108

Denormalized Number, 132

Density Clustering, 129
Detailed Balance Condition, 177, 299
DFBETAS (Studentized Difference in Beta Estimates),
82
DFP Updating Method (Davidon-Fletcher-Powell Up-
dating), 165
DIFFITS (Studentized Difference caused to Fitted val-
ues), 82
Dirac § Function, 323
Dirichlet Distribution, 326
Discount Factor, 310
Discrete Newton Method, 164
Discriminant Analysis, 123, 237
Distribution, 5
F’ Distribution, 23
I" Distribution, 205
x? Distribution, 22
t Distribution, 23
Generalized Gamma Distribution, 206
Log-Normal Distribution, 205
Multivariate Normal Distribution, 111
Normal Distribution, 20
Weibull Distribution, 205
Wishart Distribution, 113
Distribution Family, 25
do( ) Operator, 290
dof/df (Degree of Freedom), 64
Donsker Theorem, 306
d™ Degree Polynomial Kernel, 245
DTMC (Discrete Time Markov Chain), 298
Dual Problem, 136
Dunnett’s Test, 353
DW Test (Durbin-Watson Test), 79

EACF (Extended Autocorrelation), 269

ECDF (Empirical CDF), 40

ECM (Expected Cost of Misclassification), 124
EDA (Exploratory Data Analysis), 59
Effective Sample Size, 180
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Efron’s Approximation, 217 Finite Precision Computation, 132
Eigenvalue, 106, 143, 248 Finite Sample, 274
EKF (Extended Kalman Filter), 317 Finite Subadditivity, 8
Elastic Net, 93, 234 Fisher Fiducial Argument, 45
ELBO (Evidence Lower Bound), 172 Fisher Information, 36, 207, 280, 328
elpd (Expected log Prediction Distribution for New Data), Fisher’s LSD (Fisher’s Least Significant Difference),
330 97,352
EM Algorithm (Expectation Maximization Algorithm), Fisher’s Scoring Method, 158
128, 171 Fisher’s Sharp Null Hypothesis, 277
E(MS), 224 Fisher-Pearson Coefficient of Skewness, 76
Entropy, 250 Fixed Effect, 222, 350
Episode, 310 Fixed Point Iteration, 154
Equilibrium, 177, 298, 302 Fletcher-Reeves Method, 170
Ergodicity, 301 Float, 132
Error Rate, 235 FNR (False Negative Rate), 235
Euclidean Distance, 105 FOR (False Omission Rate), 236
Event, 6 Forecast, 270
Exact Line Search, 163 Fork, 288
Exhaustive Search, 92 Forward Stability, 134
Expectation, 13 FPR (False Positive Rate), 235
Exponential Family, 28 Fractile
Exponential Smoothing Model, 256 p-fractile, 12
Extended Cauchy-Schwartz Inequality, 110 Upper a-fractile, 23
Externally Studentized Residual, 81 Frobenius Norm, 109
Extinction Probability, 306 Frontdoor Adjustment, 295

i 16, 322
F Distribution, 23 FT (Fourier Transform), 16,

Fi Score, 236 Galton-Watson Tree, 305

FA (Factor Analysis), 119 Gambler’s Model, 304

Factor Effect Model, 96, 221 Gamma Integral, 324

Factor Loading, 118 Gauss-Markov Assumption, 37, 61, 72

Factor Model, 95, 220, 349 Gauss-Markov Theorem, 66

Factor Rotation, 120 Gauss-Seidel Iteration Method, 155

Factorial Design, 362 Gaussian Elimination Algorithm, 139

Factorization Theorem, 29 Gaussian Kernel, 40, 245

FDA (Fisher’s Discriminant Analysis), 125 GCD (Greatest Common Divisor), 299

FDR (False Discovery Rate), 236, 353 Gelman-Rubin Potential Scale Reduction Factor, 335

FH Estimator (Fleming-Harrington Estimator), 210 Generalization Ability, 233

Fibonacci Section Search, 148 Generalized Cox-Snell Residuals, 217
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Generalized Gamma Distribution, 206 Hitting Time, 304

Generalized Lagrange Function, 135 HMC (Hamiltonian MC), 335
Generalized Linear Model, 232 HMM (Hidden Markov Model), 313
Generalized Variance, 105 Hoeffding Inequality, 20
Generator, 302 Homogeneity Test, 55

Geometric Mean, 91 Homoscedasticity, 76

Geometric Model, 7 Horvitz-Thompson Estimator, 286
Gershgorin Circle Theorem, 302 Hotelling’s T2, 114

ggplot2, 199 Householder Reflection, 142
Gibbs Sampling, 336 Hyperbolic Tangent Function, 253
Gini Impurity, 250 Hypothesis Testing, 45, 207

Givens Rotation, 143

GLM (Generalized Linear Model), 98, 160
GLT (General Linear Test), 84

GMM (Gaussian Mixture Model), 128
Golden Section Search, 148
Goodness-of-Fit Test, 54

Goodness-of-fit Test, 217

Gradient Descent Method, 157

I-map (Independence Map), 289

IC Algorithm (Inductive Causation Algorithm), 291
Idempotence, 70

Importance Resampling, 180

Importance Sampling, 179, 333
Inclusion-Exclusion Formula, 8

Independence, 10

Indicator Function, 11
Graeco-Latin Square Design, 360

Graph Laplacian, 247
Greedy Gambler, 305
Greedy Search Algorithm, 92

Individualistic Assignment, 275
Inequality
Bonferroni Inequality, 19

Boole Inequality, 8
Greenwood’s Formula, 209

GUI (Graphical User Interface), 183

Cauchy-Schwarz Inequality, 19, 110
CR Inequality, 35

Hamiltonian Dynamics, 335 Hoeffding Inequality, 20
Hammersley Clifford Theorem, 337 Jensen Inequality, 19

Hard Margin SVM, 239 Markov Inequality, 19

Hat Matrix, 70 Maximazation Lemma, 110
Hazard Function, 203 Influentials, 80

Hazard Rate, 204 Innovation Sequence, 309
Hermitian Matrix, 144 Instrumental Variable Method, 296
Heteroscedasticity, 76 Internally Studentized Residual, 80
Hierarchical Clustering, 126 Interpolation, 150

Hierarchical Model, 344 Interval Estimation, 40
Hierarchical Principle, 84 Invariance of MLE, 34

Hilbert Space, 243 Invariant Distribution, 177

Hinge Loss, 242 Inverse Distribution, 326
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Inverse Fourier Transform, 16

Inverse Transform Method, 174, 332

10 (Innovative Outlier), 269

IQI (Inverse Parabolic Interpolation), 152

IRLS (Iteratively Re-weighted Least Squares), 158
Irreducible, 299, 303

Jacobi Method, 154
Jarque-Bera Test, 78
Jeffrey’s Prior, 328

Jensen Inequality, 19, 171
Jointly Gaussian Variable, 22

Jordan Formula, 8

K-Means Clustering Algorithm, 127

Kalman Filter, 313

Kalman-Bucy Filter, 317

Karlin-Rubin Theorem, 51

Kernel Density Estimation, 40

Kernel Function, 242

Kernel Regression, 246

KKT Condition (Karush-Kuhn-Tucker Condition), 136
KL Divergence (Kullback-Leibler Divergence), 171
KL Expansion (Karhunen-Loeve Expansion), 313
KM Estimator (Kaplan-Meier Estimator), 208
KNN (k-Nearest Neighours), 237

Kolmogorov Forward, 302

Kronecker Product, 108

KS Test (Kolmogorov-Smirnov Test), 56, 78
KSVM (Kernel Support Vector Machine), 245
Kurtosis, 26, 76

L-BFGS Method, 167

Lagrange Dual Problem, 136

Lagrange Polynomial Interpolation, 152

Laplace Transformation, 16

LASSO (Least Absolute Shrinkage and Selection Oper-
ator), 92, 233

Latin Square Design, 357

Law of Total Expectation, 13

Law of Total Variance, 14

LCM (Linear Congruential Method), 173
LDA (Linear Discriminant Analysis), 124, 237
Leapfrog, 336

Lehmann-Scheffé Theorem, 35
Leptokurtic, 76

Levene’s Test, 77, 227, 352

Leverage, 81

Levinson-Durbin’s Recursive Formula, 259
Life Table, 203

Likelihood Function, 33, 206

Linear Congruential Method, 173

Linear Perceptron, 252

Linear Regression, 37, 60

Link Function, 100

Ljung-Box Test, 79

LLN (Law of Large Number), 18

Loading Matrix, 120

LOESS (Locally Regression), 94
Log-likelihood Function, 33

Log-Log Plot, 217

Log-Log Pointwise Approach, 209
Logistic Function, 253

Logistic Regression, 100, 162, 238
Longitudinal Study, 227

LOWESS (Locally Weighted ScatterPlot Smoother), 94
L, Convergence, 17

LRT (Likelihood Ratio Test), 48, 230

LTI Systems (Linear Time Invariant Systems), 318
LTU (Linear Threshold Unit), 252

LU Decomposition, 139

M-Estimator (Maximization Estimator), 279

m.s. LLN (Mean-Squared Law of Large Number), 17
MA Model (Moving-Average Model), 265

Machine Learning, 231

Mahalanobis Distance, 83, 105

Mallow’s C),, 88

Mann-Whitney Form, 213
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Mann-Whitney-Wilcoxon Rand Sum Test, 213

Mantel-Haenszel Logrank Test, 210

Mantissa, 132

MAP (Maximum A Posteriori), 330

Marginal Distribution, 12, 329

Markov Compatibility, 289

Markov Inequality, 19

Martingale, 303

Matrix Differentiation, 107

Maximazation Lemma, 110

McDiarmid Inequality, 20

MCMC (Markov Chain Monte Carlo), 176, 334

McNemar Test, 230

MDPs (Markov Decision Processes), 310

MDS (Martingale Difference Sequence), 256

Mean, 26

Mean Field Approximation, 338

Mean Residual Life Time, 204

Mean Survival Time, 204

Mediator, 288

Mercer’s Theorem, 243

MGF (Moment Generating Function), 16

MH Algorithm (Metropolis-Hastings Algorithm), 177,
334

MH Test (Mental-Haenszel Test), 211

Minimal Sufficient Statistics, 30

Misclassification Rate, 235

MLE (Maximum Likelihood Estimation), 33, 112

MLP (MultiLayer Perceptron), 253

MLR Condition (Monotone Likelihood Ratio Condition),
51

MoM (Method of Moments), 32
Moment, 26

Moment Estimate, 32
Monotonicity, 8

Montgomery’s Method, 224
Multi-colinearity, 86

Multiplication Formula, 9

NA Estimator (Nelson-Aalen Estimator), 210
Naive Bayes Classifier, 238

Nested Factor, 227

Neural Network, 252

Newton-Raphson Method, 158

Neyman’s Repeated Sampling Approach, 278
Neyman-Pearson Lemma, 50
Neyman-Pearson Principle, 47
Neyman-Rubin Framework, 273

NM Search Method (Nelder-Mead Search Method), 155
Non-Causal Solution, 318

Non-explosive, 303

Non-informative Prior, 328

Non-parametric Hypothesis Testing, 53
Norm, 109

Normal Distribution, 325

Normal Matrix, 144

Normality Test, 56

Normalization, 7

Normalized Number, 132

NPV (Negative Predictive Value), 236

NTK (Neural Tangent Kernel), 254

Null Hypothesis, 45

MM Algorithm (Maximization-Maximization Algorithm)Observational Equivalence, 289

172
MMSE (Minimum Mean Squared Error Estimator), 32,
320
MMSE (Minimum Mean Squared Estimator), 258
Modified Gram-Schmidt Orthogonalization, 142

Module Invariance, 294

Odds Ratio, 229

ODE (Ordinary Difference Equation), 262

OLS (Ordinary Least Squares), 37, 63, 69

Open Linear Interpolation, 151

OPTICS (Ordering Point To Indentify the Cluster Struc-
ture), 130
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Optimal Kalman Gain, 314
Order Determination, 268
Order Statistics, 12, 26
Orthogonal Factor Model, 120
Orthonormality, 106

Outlier, 269

p-fractile, 12

p-value, 47

PACEF (Partial Autocorrelation), 258
Parabolic Interpolation, 152

Parseval’s Theorem, 322

Partial Likelihood, 214

Partial Regression Plot, 74

Path, 287

PC Score (Principal Component Score), 118
PCA (Principal Component Analysis), 117, 313
PDF (Probability Density Function), 10
Pearl Causal Bayesian Framework, 287
Pearson’s X2 Test, 55, 211, 229

Pearson’s Correlation Coefficient, 85
Pearson’s Correlation Coefficient r, 26, 105
Pearson’s Theorem, 54

Peter & Clark Algorithm Refinement, 291
PGF (Probability Generating Function), 15

PH Model (Cox’s Proportion Hazard Model), 214

Pivot Element, 139

Pivot Variable Method, 42
Platykurtic, 76

Plot Parameters in R., 195

PMF (Probability Mass Function), 10
PO (Potential Outcome), 274
Point Estimation, 31

Poisson Process, 307
Polak-Ribiere Method, 170
Policy, 310

Polynomial Kernel, 245
Polynomial Regression Model, 95
Pooled Sample Variance, 42

Positive Definite Matrix, 107

Positive Recurrent State, 300

Potential Outcome Framework, 273

Power Function, 47

PPV (Positive Predictive Value), 235

PRE (Pairwise Randomized Experiment), 285
Pre-Treatment Variable, 274

Precision, 235

PRESS (Predictive Residual Error Sum of Squares), 89
Prevalence, 235

Primal Problem, 135

Probabilistic Assignment, 275

Probability Space, 7

Projection Operator, 69, 137, 320

Propensity Score, 276, 283

Proportion of Strata, 283

Proposal Distribution, 178, 332

Prospective Study, 228

Proximity Matrix, 246

Pseudo Inverse Matrix, 138

Pulse Function, 270

Q-Learning, 312

QDA (Quadratic Discriminant Analysis), 125, 238
QQ-Plot (Quartile-Quartile Plots), 74

@R Decomposition, 141

Quantifier, 194

Quasi Newton Method, 164

Quasi-Newton Condition, 165

r.v. (Random Variable or Random Vector), 10, 102
RAM (Regular Assignment Mechanisms), 275
Random Effect, 222, 350

Random Forest, 251

Random Number Generator, 173

Random Walk, 303

Rank Statistics, 53

Rao-Blackwell Theorem, 35

Rayleigh Quotient, 144
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Rayleigh’s Energy Theorem, 322

RBE (Randomized Blocks Experiment), 283

RBF Kernel (Radical Base Function Kernel), 245

RCBD (Randomized Complete Block Design), 356

Reachable, 299

Recall, 235

Regula Falsi Method, 150

Regular Expression, 193

Regularization, 92, 233

Rejection Region, 45

Relative Efficiency, 356

Relative Risk, 229

ReLU (Rectified Linear Unit), 253

Replicted Latin Square Design, 358

Representer Theorem, 244

Residuals, 38, 63

Respective Probability, 229

Retrospective Study, 228

Ridge Regression, 93, 233, 346

RKHS (Reproducing Kernel Hilbert Space), 243

ROC Curve (Receive Operating Characteristic Curve),
236

Rounding Error, 132

Sample Path, 297

Sample Space, 26

Sampling Distribution, 27

SARIMA (Seasonal ARIMA Model), 267
SBC (Schwarz’s Bayesian Criterion), 89
Scaled Exponential Family, 99, 159

SCB (Simultaneous Confidence Band), 67
Scheffé’s Method, 97, 352

Schoenfeld Residuals, 217

Schur Decomposition, 146

Score Function, 36, 207

Score Test, 207

Search and Score Methods, 293

Secant Condition, 165

Secant Interpolation, 151

Selection Bias, 76

Self-sensitivity, 80

Sensitivity, 235

Shapiro-Wilk Test, 227
Sherman-Morrison Formula, 110

o-Field, 6

o-Subadditivity, 8

Sigmoid Kernel, 245

Sign Test, 53

Simplex Search Method, 155

Skeleton, 287

Skewness, 26, 75

SLLN (Strong Law of Large Number), 18
Slutsky’s Theorem, 17

SMO Algorithm, 246

Soft Margin SVM, 240

Sojourn Time, 299, 302

SOR Method (Successive Over-Relaxation Method), 155
SPD (Symmetric Positive Definite), 168
Spectrum Clustering, 247

Spectrum Decomposition, 144

Spectrum Density, 259

Square Root Matrix, 106

SR-1 Method, 165

SRE (Stratified Randomized Experiment), 283
SS (Strictly Stationary), 257

SSE (Error Sum of Squares), 37, 68
SSPE (Sum Squared Prediction Error), 88
SST (Total Sum of Squares), 68

Standard Deviation, 14

Standardization, 14

Standardized Regression Model, 94
Standardized Residual, 80

State Diagram, 298

State-Value Function, 311

Stationarity, 257

Stationary Distribution, 177, 298, 302

Statistical Inference, 25
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Statistics, 26 UMP Test (Uniformly Most Powerful Test), 50
Steepest Descent Method, 167 UMVUE (Uniformly Minimum Variance Unbiased Es-
Stirling Equation, 18 timator), 35

STL Model (Seasonal and Trend Decomposition using Unbiasedness, 31

Loess), 256 Unconfounded Assignment, 276
Stochastic Process, 256, 297 Unitary Matrix, 137
Studentized Range Distribution, 97
Studentized Residual, 80
Subsetting in R., 189

v-structure, 288

V' -Value (State-Value Function), 311
Variable Selection, 92

Variance, 14, 321

Sufficient Statistic, 29

Sum of Wilcoxon Signed Rank, 53
) Variance Stabilizing Transformation, 90
Super Population, 274
Variation Bayesian Inference, 338
Support Vector, 242
) ) Vectorized Operation in R., 188
Survival Function, 203

SUTVA (Stable Unit Treatment Value Assumption), 275
SVD (Singular Value Decomposition), 145

Venn Diagram, 86
VIF (Variance Inflation Factor), 87

SVM (Support Vector Machine), 239 Wald Test, 208

SW Test (Shapiro-Wilk Test), 56, 78 Weibull Distribution, 205
Welch’s ANOVA, 352
Welch’s t Test, 349
Wiener Filter, 318

t Distribution, 23
t-test, 48

Test Function, 46
Wiener Process, 306

Wilcoxon Two-Sample Rank Sum Test, 54, 212, 213
Wildcard, 194

Wilk’s Theorem, 50

Wishart Distribution, 113

WLLN (Weak Law of Large Number), 18
WLS (Weighted Least Squares), 92

WN (White Noise), 256

Wold Decomposition, 259

Woodbury Matrix Identity, 110

WS (Weakly Stationary), 257

WSRT (Wilcoxon Signed Rank Sum Test), 53

tidyverse, 190

Tikhonov Regularization, 93
Time Homogeneity, 298

Time Series, 255

TNR (True Negatie Rate), 235
Total Probability Theorem, 9
TPM (Total Probability of Misclassification), 124, 126
TPR (True Positive Rate), 235
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